13 research outputs found

    Numerical Investigations into Horseshoe Vortices in Draft Tubes of Bulb Turbines

    No full text

    Numerical investigation of the jet velocity profile and its influence on the Pelton turbine performance

    No full text
    Numerical investigation of the unsteady flow patterns around the bucket can be helpful to improve the Pelton turbine efficiency. In fact, by studying the loss mechanisms in the flow, one can optimize the bucket design. For this purpose, an accurate investigation of the water jet is also necessary as an inlet condition for the bucket flow. The water jet ejected from the nozzle is actually non-uniform, due to the upstream turbulence and secondary flow in the distributor, bending pipes, needle and supports. This non-uniformity causes a deviation of the water jet from the ideal jet center, which is tangent to the jet circle, and it directly affects the flow patterns around the bucket. Whereas water splashing makes experimental observations very challenging, a numerical approach is effective and convenient to study the unsteady flow pattern in a Pelton turbine. In the present research, numerical analysis of the two-phase flow through the distributor, bending pipe and nozzle, has been performed. The jet velocity profile has been verified with experimental results, which are measured in the model test equipment, and good agreement is obtained for both velocity profile and jet deviation. In addition, the analysis of the bucket unsteady flow is performed using the aforementioned non-uniform jet velocity profile and the calculated flow pattern around the bucket is compared to the previous calculation using a uniform velocity profile at the inlet boundary. The difference between the two cases is discussed based on the quantitative and qualitative evaluation from the numerical analysis

    GPU-accelerated numerical analysis of jet interference in a six-jet Pelton turbine using Finite Volume Particle Method

    No full text
    The Pelton turbine is an impulse turbine typically installed for high head hydroelectric power plants. For a site with a rated head H and discharge Q, a higher specific speed turbine results in a more compact generating unit with reduced manufacturing costs but requires a larger number of jets. However, by increasing the number of jets and specific speed, the water jets tend to interfere, creating a significant energy loss. In the present research, the interaction between two adjacent jets in a six-jet Pelton runner is simulated using a GPU-accelerated particle-based in-house solver based on the 3-D Finite Volume Particle Method (FVPM). The numerical simulations are performed at eight operating points ranging from N/NBEP = 0.89 to N/NBEP = 1.31; where N is the runner rotational speed, and BEP is the Best Efficiency Point. The torque and efficiency trends, as well as the speed range in which the jets interfere, are well-captured, which provides confidence in the use of the numerical simulations for the design optimization of Pelton turbines. The simulations, in particular, evidence a significant torque and efficiency drop at high rotational speeds, due to jet interference. Furthermore, jet disturbance yields load fluctuations at rotational speeds both lower and higher than the NBEP, which is likely to amplify fatigue damage. Both phenomena are worth considering that in the design process of a Pelton machine
    corecore