43 research outputs found

    Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    Get PDF
    This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance) and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (K-40, Ra-226 and Th-232) Spatial and vertical distribution of radionuclides was determined and analyzed to show the relations between the specific activities in the soil and soil properties and the most influential factors of natural radionuclide variability were identified. The radiological indices for surface soil were calculated and radiological risk assessment was performed. The measured specific activities were similar to values of BACKGROUND: levels for Serbia. The sampling depth did not show any significant influence on specific activities of natural radionuclides. The strongest predictor of specific activities of the investigated radionuclides was soil granulometry. All parameters of radiological risk assessment were below the recommended values and adopted limits. It appears that the coal-fired power plant does not have a significant impact on the spatial and vertical distribution of natural radionuclides in the area of interest, but technologically enhanced natural radioactivity as a consequence of the plant operations was identified within the first 1.5 km from the power plant

    Procena ekološkog i zdravstvenog rizika od teških metala u zemljištu u okolini termoelektrane „Nikola Tesla A“

    Get PDF
    Ecological and health hazards were assessed based on the concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in thirty surface soil samples taken from the sites around the largest Serbian thermal power plant. Ecological risk caused by heavy metals was estimated through pollution indices whose values indicated low to moderate ecological risks. Health hazard associated with residents’ exposure to heavy metals in soil was calculated applying the U.S. EPA model. The ingestion of soil was the most important exposure pathway. The risk assessment showed that exposure to Co, Fe, and Mn would result in an unacceptable non-carcinogenic risk for children. Cr and Pb were reported to significantly contribute to a carcinogenic risk, while total carcinogenic risk remained within the acceptable non-hazardous range.Ekološki i zdravstveni rizik su procenjeni u odnosu na koncentracije odabranih teških metala (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb i Zn) u trideset površinskih uzoraka zemljišta iz okoline najveće termoelektrane u Srbiji. Ekološki rizik je procenjen putem različitih pokazatelja zagađenja i njihove vrednosti pokazuju niski do srednji ekološki rizik. Rizik po zdravlje usled izlaganja stanovništva teškim metalima u zemljištu je izračunat primenom modela Agencije za zaštitu životne sredine Sjedinjenih Američkih Država. Ingestija zemljišta je identifikovana kao najvažniji put izlaganja. Procena rizika je pokazala da ekspozicija Co, Fe i Mn rezultuje neprihvatljivim nekancerogenim rizikom za decu. Cr i Pb su bili jedini elementi koji su doprinosili u većem obimu kancerogenom riziku, ali je ukupan kancerogeni rizik bio u granicama tolerantnog

    Changes in expression of GFAP, ApoE and APP mRNA and protein levels in the adult rat brain following cortical injury

    Get PDF
    The recovery period following cortical injury (CI) is characterized by a dynamic and highly complex interplay between beneficial and detrimental events. The aim of this study was to examine the expressions of Glial Fibrillary Acidic Protein (GFAP), Apolipoprotein E (ApoE) and Amyloid Precursor Protein (APP), all of which are involved in brain plasticity and neurodegeneration. Our results reveal that CI strongly influenced GFAP, ApoE and APP mRNA expression, as well as GFAP and ApoE protein expression. Considering the pivotal role of these proteins in the brain, the obtained results point to their potential contribution in neurodegeneration and consequent Alzheimer's disease development.Projekat ministarstva br. 17305

    Changes in expression of GFAP, ApoE and APP mRNA and protein levels in the adult rat brain following cortical injury

    Get PDF
    The recovery period following cortical injury (CI) is characterized by a dynamic and highly complex interplay between beneficial and detrimental events. The aim of this study was to examine the expressions of Glial Fibrillary Acidic Protein (GFAP), Apolipoprotein E (ApoE) and Amyloid Precursor Protein (APP), all of which are involved in brain plasticity and neurodegeneration. Our results reveal that CI strongly influenced GFAP, ApoE and APP mRNA expression, as well as GFAP and ApoE protein expression. Considering the pivotal role of these proteins in the brain, the obtained results point to their potential contribution in neurodegeneration and consequent Alzheimer's disease development.Projekat ministarstva br. 17305

    Evolutionary characterization of lung adenocarcinoma morphology in TRACERx

    Get PDF
    Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and ‘tumor spread through air spaces’ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy

    Get PDF
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response

    Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA

    Get PDF
    Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy

    Genomic–transcriptomic evolution in lung cancer and metastasis

    Get PDF
    Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource
    corecore