51 research outputs found
Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition
Absorption spectra of polycrystalline L-, D-, and DL-alanine have been measured by the terahertz time domain spectroscopy (THz-TDS)in the frequency range from 10 to 90 cm−1 at room temperature. We observed several absorption bands, which have the large difference between enantiomers (L- and D-alanine)and the racemic compound (DL-alanine)in their peak frequencies. This obvious difference shows that the THz absorption bands are strikingly sensitive to the crystal structures. This result indicates that the THz-TDS can be used for distinguishing between the enantiomers and the racemic compound. We propose and demonstrate a method to determine the enantiometric composition of amino acids from the THz absorption spectra
Sphingosine 1-phosphate (S1P) inhibits monocyte–endothelial cell interaction by regulating of RhoA activity
AbstractRecent studies suggest that sphingosine 1-phosphate (S1P) protects against atherosclerosis. We assessed the effects of S1P on monocyte–endothelial interaction in the presence of inflammatory mediators. Pretreatment of THP-1 cells with S1P abolished Phorbol 12 myristate 13-acetate (PMA)-induced THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs). S1P inhibited PMA-induced activation of RhoA, but not PKCs. S1P activated p190Rho GTPase activation protein (GAP) only in the presence of PMA, suggesting an inhibitory effect of S1P and PMA to suppress RhoA. In conclusion, S1P inhibited monocyte–endothelial interactions by inhibiting RhoA activity which may explain its anti-atherogenic effects
Current status and problems of driving in elderly with cognitive decline in Okayama.
Regular Articlejournal articl
Sweet potato (Ipomoea batatas L.) leaves suppressed oxidation of low density lipoprotein (LDL) in vitro and in human subjects
Sweet potato (Ipomoea batatas L.) leaves are consumed as vegetables around the world, especially in Southeast Asia. The aim of this study was to investigate the inhibitory effect of sweet potato leaves on low-density lipoprotein oxidation in vitro and in human subjects. We compared the antioxidant activity of 8 kinds of sweet potato leaves. Every sweet potato leaf had high radical scavenging activity and prolonged a lag time for starting low-density lipoprotein oxidation in vitro. We found that sweet potato leaves contained abundant polyphenol compounds and the radical scavenging activity and prolongation rate of lag time were highly correlated with total polyphenol content. We also confirmed that thiobarbituric acid reactive substances production was increased in endothelial cell-mediated low-density lipoprotein oxidation, which was decreased by treatment with sweet potato leaves. We further measured the low-density lipoprotein oxidizability in 13 healthy volunteers after their intake of 18 g of “Suioh”, raw sweet potato leaves. “Suioh” prolonged a lag time for starting low-density lipoprotein oxidation and decreased low-density lipoprotein mobility. These results suggest that sweet potato leaves have antioxidant activity leading to the suppression of low-density lipoprotein oxidation
γ-Tocopherol Accelerated Sodium Excretion in a Dose-Dependent Manner in Rats with a High Sodium Intake
We have previously reported that γ-tocopherol (γ-Toc) displays a natriuretic potency in rats fed a NaCl diet and administered 20 mg γ-Toc. In this study, we investigated whether γ-Toc has natriuretic potency at a dose lower or higher than 20 mg in rats given a NaCl diet. Male rats were fed a control diet or a NaCl diet and administered either placebo or 10, 20 or 40 mg of γ-Toc. The rat urine was collected for 24 hours (divided into 6 hour periods) and the 2,7,8-trimethyl-2-(2'-carboxyethyl)-6-hydroxychroman (γ-CEHC) level, the sodium excretion content, and the urine volume were determined. The 24-hour γ-CEHC and sodium levels in the urine of the NaCl groups given 20 mg or 40 mg γ-Toc were significantly higher than those in the placebo group. The peak levels of urine sodium and γ-CEHC in the NaCl group given 40 mg γ-Toc appeared at 0–6 h, which was a more rapid increase than that seen in the group given 20 mg γ-Toc. The 24-hour urine volumes of the NaCl groups given 10 and 20 mg γ-Toc were significantly higher than the urine volume of the placebo group. Our findings suggested that γ-Toc increased sodium excretion in a dose-dependent manner in rats fed a NaCl diet. Moreover, a high dose of γ-Toc may accelerate its metabolism and cause an increase in the rate of sodium excretion
MMP-10/Stromelysin-2 Promotes Invasion of Head and Neck Cancer
Background: Periostin, IFN-induced transmembrane protein 1 (IFITM1) and Wingless-type MMTV integration site family, member 5B (Wnt-5b) were previously identified as the invasion promoted genes of head and neck squamous cell carcinoma(HNSCC) by comparing the gene expression profiles between parent and a highly invasive clone. We have previously reported that Periostin and IFITM1 promoted the invasion of HNSCC cells. Here we demonstrated that Wnt-5b overexpression promoted the invasion of HNSCC cells. Moreover, stromelysin-2 (matrix metalloproteinase-10; MMP-10) was
identified as a common up-regulated gene among Periostin, IFITM1 and Wnt-5b overexpressing HNSCC cells by using
microarray data sets. In this study, we investigated the roles of MMP-10 in the invasion of HNSCC.
Methods and Findings: We examined the expression of MMP-10 in HNSCC cases by immunohistochemistry. High expression of MMP-10 was frequently observed and was significantly correlated with the invasiveness and metastasis in HNSCC cases. Next, we examined the roles of MMP-10 in the invasion of HNSCC cells in vitro. Ectopic overexpression of
MMP-10 promoted the invasion of HNSCC cells, and knockdown of MMP-10 suppressed the invasion of HNSCC cells.
Moreover, MMP-10 knockdown suppressed Periostin and Wnt-5b-promoted invasion. Interestingly, MMP-10 overexpression
induced the decreased p38 activity and MMP-10 knockdown induced the increased p38 activity. In addition, treatment with a p38 inhibitor SB203580 in HNSCC cells inhibited the invasion.
Conclusions: These results suggest that MMP-10 plays an important role in the invasion and metastasis of HNSCC, and that invasion driven by MMP-10 is partially associated with p38 MAPK inhibition. We suggest that MMP-10 can be used as a marker for prediction of metastasis in HNSCC
The Japanese Clinical Practice Guideline for acute kidney injury 2016
Acute kidney injury (AKI) is a syndrome which has a broad range of etiologic factors depending on different clinical settings. Because AKI has significant impacts on prognosis in any clinical settings, early detection and intervention are necessary to improve the outcomes of AKI patients. This clinical guideline for AKI was developed by a multidisciplinary approach with nephrology, intensive care medicine, blood purification, and pediatrics. Of note, clinical practice for AKI management which was widely performed in Japan was also evaluated with comprehensive literature search
The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force
「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
- …