40 research outputs found

    Late Neogene to Quaternary paleoproductivity of the western Indian Ocean and the eastern South Atlantic from coccolithophore assemblage and coccolith geochemistry

    Get PDF
    Recent productivity reconstructions off South Africa have demonstrated the link between climate perturbations and coccolithophore productivity, especially over the glacial/interglacial cycles. These studies suggested enhanced productivity during glacial periods reaching maxima during terminations, and fluctuating in concert with orbital periodicities, suggesting that long-termed climatic variability have controlled the productivity patterns in this region. However most of these studies have focused on the highly productive regions of the northern and eastern Indian Ocean, and the Benguela upwelling area of the South Atlantic, whereas productivity reconstructions outside of these high-nutrient environments remain relatively scarce. Thus this research fills this gap by investigating sediment cores collected off Tanzania, the Natal Valley, the Mozambique Channel, and the Walvis Ridge. The strategic positions of the selected study sites allowed inter-basin and latitudinal comparisons, and accordingly a comprehensive productivity reconstruction of the western Indian Ocean and the eastern South Atlantic over the past 500 kyr, and across the Plio-Pleistocene transition. The coccolithophore assemblage composition and species distributions, preservation, and coccolith fraction geochemistry provided the groundwork for this reconstruction

    IODP Expedition 361 – Southern African Climates and Agulhas LGM Density Profile

    Get PDF
    IODP Expedition 361 drilled six sites (U1474 – U1479) on the southeast African margin and the Indian-Atlantic ocean gateway from 30 January to 31 March 2016. The sites, situated in the Mozambique Channel, Natal Valley, Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the Greater Agulhas Current System over the past ~5 Ma. More specifically, the main objectives of Expedition 361 were: (i) to establish the sensitivity of the Agulhas Current to climate change during the Plio-Pleistocene in association with transient to long-term changes of high-latitude climates, tropical heat budgets, and the monsoon system; (ii) to determine the dynamics of the Indian-Atlantic gateway circulation in association with changing wind fields and migrating ocean fronts; (iii) to examine the connection of the Agulhas leakage and the Atlantic Meridional Overturning Circulation; (iv) to address the influence of the Agulhas Current on African terrestrial climates, notably rainfall patterns and river runoff, and potential links to hominid evolution. Additionally, the expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples aiming at constraining the temperature and salinity profiles of the ocean during the Last Glacial Maximum. In total, 5175 m of core was recovered (average recovery 102 %) from a region poorly represented in the database of drill sites for scientific purposes. Physical property records derived from core-logging of the recovered sequences allowed complete spliced stratigraphic sections to be generated that span the interval of 0 to between ~0.13 and 7 Ma. A high-resolution program of interstitial water samples was carried out at Sites U1474, U1475, U1476, and U1478. The expedition made major strides toward fulfilling the scientific objectives despite of ~11 days of lost operational time due to weather conditions, a medical evacuation, and delays in attaining the necessary permissions to operate in Mozambique exclusive economic zone waters. Site U1474 (3034 meters below sea level [mbsl]), located in the northernmost Natal Valley, consists of eight holes ranging in penetration depth from 3.1 to 254.1 m drilling depth below seafloor (dsf). A total of 910.8 m of sediment was recovered, predominantly consisting of foraminifer-bearing clay with nannofossils. Based on the shipboard bio- and magnetistratigraphic datums, the sedimentary sequence extends back to the late Miocene (~6.2 Ma). This record represents the only site situated beneath the main flow of the fully constituted Agulhas Current and therefore provides the opportunity for high-resolution climate reconstructions of Agulhas Current warm-water transports and upstream variability that may allow the identification of connections between Agulhas leakage and its headwater variability. It also holds significant potential to investigate the connections between southern African terrestrial climates and southeast Indian Ocean heat budgets and the links to the cultural evolution of early modern humans. Site U1475 (2669 mbsl), located on the southwestern flank of the Agulhas Plateau, consists of six holes ranging in penetration depth from 1.5 to 277.0 m dsf. A total of 1015.9 m of sediment was recovered, predominantly consisting of nannofossil ooze. Shipboard bio- and magnetistratigraphic data suggest that the sedimentary sequence extends back to the late Miocene (~7 Ma). This record provides the opportunity for high-resolution climate reconstructions of the Agulhas Return Current and connections with the Sub-Tropical Front, productivity, and deep-water circulation. Site U1476 (2165 mbsl), located at the northern entrance of the Mozambique Channel, consists of five holes ranging in penetration depth from 5.7 to 234.8 m dsf. A total of 873.8 m of sediment was recovered, predominantly consisting of foraminifer-rich nannofossil ooze. The sedimentary sequence extends back to the late Miocene (~6.9 Ma), as inferred from the shiboard bio- and magnetostratigraphic data. The site boasts excellent biostratigraphy and notably cyclic physical properties. It therefore provides the opportunity for high-resolution reconstructions of tropical faunal assemblages, which will allow identification of connections be¬tween Agulhas leakage and its headwater variability. It also holds significant potential to investigate the connections between southern African terrestrial climates and southeast Indian Ocean heat budgets and thermocline and deep-water variability with likely links to the development of the Indonesian Throughflow as well as aridification of east Africa. Because of the excellent preservation of foraminifers, this an ideal site for a long record of surface-ocean pH from boron isotopes. Site U1477 (429 mbsl), located in the western Mozambique Channel east of the Zambezi River delta, consists of three holes ranging in penetration depth from 119.4 to 181.2 m dsf. A total of 490.0 m of sediment was recovered, predominantly consisting of sandy clay with foraminifers and nannofossils. Based on correlations to a nearby 14C dated cores and two biostratigrahic markers, the sedimentary sequence extends back to the Late Pleistocene (~0.13 Ma). The extreme accumulation rate (~1 m/ky) at this site provides the opportunity for exceptionally high resolution reconstructions of terrestrial climate and thermocline characteristics during the last glacial cycle. Site U1478 (488 mbsl), located in the western Mozambique Channel east of the Limpopo River delta, consists of four holes ranging in penetration depth from 216.0 to 248.4 m dsf. A total of 922.1 m of sediment was recovered, predominantly consisting of sand or clayey/sandy silt with foraminifers and nannofossils. The shipboard age-model suggests that the sedimentary sequence extends back to the Pliocene (~4 Ma). This record provides the opportunity for high-resolution climate reconstructions of faunal, biogeochemical, and terrigenous tracers that are characteristic of the upper reaches of the Agulhas Current warm-water transports that will allow connections between Agul¬has leakage and its headwater variability. The site also holds significant potential to investigate the connections between southern African terrestrial climates and southeast Indian Ocean heat budgets, and examine the relationship between such climate variability and early human evolution. Site U1479 (2615 mbsl), located in Cape Basin, consists of nine holes ranging in penetration depth from 1.0 to 300.7 m dsf. A total of 963.1 m of sediment was recovered, predominantly consisting of nannofossil ooze with or without foraminifers. According to the shipboard bio- and magnetostratigraphy-based age model, the sedimentary sequence extends back to the late Miocene (~7 Ma). This record represents the only site situated in the immediate Agulhas leakage pathway. It will therefore provide the opportunity for high-resolution climate reconstructions of the leakage and temporal comparisons with deep-water circulation

    Strong glacial-interglacial variability in upper ocean hydrodynamics, biogeochemistry, and productivity in the southern Indian Ocean

    Get PDF
    This work used samples and data provided by the IODP. We are thankful for the support from the crew of the R/V JOIDES Resolution and IODP staff. This work is funded through the Universidad de Salamanca Postdoctoral Contract supported by the Ministerio de Ciencia, Innovacion y Universidades Grant RTI2018-099489-B-I00 and the German Science Foundation (DFG) Research Center/Cluster of Excellence 'The Ocean in the Earth System' (MARUM; Grant No. 49926684). We acknowledge financial support from the National Science Foundation of the US under Award No. 1737218 (M.A.B), the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska Curie Grant Agreement No. 799531 (M.S.P.), and the Spanish Ministry of Science and Innovation Grant CTM2017-89711-C2-1-P, co-funded by the European Union through FEDER funds (F.J.J.E.).In the southern Indian Ocean, the position of the subtropical front – the boundary between colder, fresher waters to the south and warmer, saltier waters to the north – has a strong influence on the upper ocean hydrodynamics and biogeochemistry. Here we analyse a sedimentary record from the Agulhas Plateau, located close to the modern position of the subtropical front and use alkenones and coccolith assemblages to reconstruct oceanographic conditions over the past 300,000 years. We identify a strong glacial-interglacial variability in sea surface temperature and productivity associated with subtropical front migration over the Agulhas Plateau, as well as shorter-term high frequency variability aligned with variations in high latitude insolation. Alkenone and coccolith abundances, in combination with diatom and organic carbon records indicate high glacial export productivity. We conclude that the biological pump was more efficient and strengthened during glacial periods, which could partly account for the reported reduction in atmospheric carbon dioxide concentrations.Universidad de Salamanca - Ministerio de Ciencia, Innovacion y Universidades Grant RTI2018-099489-B-I00German Research Foundation (DFG) 49926684National Science Foundation (NSF) 1737218European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska Curie Grant 799531Spanish Government CTM2017-89711-C2-1-PEuropean Union through FEDER fund

    The last 1 million years of the extinct genus Discoaster: Plio–Pleistocene environment and productivity at Site U1476 (Mozambique Channel)

    Get PDF
    A detailed paleoenvironment reconstruction from the Mozambique Channel, western Indian Ocean, based on the calcareous nannoplankton assemblages was conducted for the interval between 2.85 and 1.85 Myr. This study covers the period during which the successive extinction of the last five species of discoasters occurred. New productivity data obtained from the abundances of the Discoaster species (Discoaster brouweri, D. triradiatus, D. pentaradiatus, D. surculus, and D. tamalis) and other indicative calcareous nannoplankton taxa showed abundance variations, which were at paced with the 100, 41, and 23 kyr astronomical periodicities. A shift in the productivity and water-column stratification proxies occurred at ~2.4 Ma, after the onset of the Northern Hemisphere glaciation. Here we propose that the variability recorded at International Ocean Discovery Program Site U1476 reflects the interplay between forcing associated with warm tropical Pacific and cold southern ocean influences. The former is shown by consistent occurrence of warm water taxa (Calcidiscus leptoporus, Oolithotus spp., Rhabdosphaera clavigera, Syracosphaera spp., Umbellosphaera spp.), typical of Indonesian Throughflow surface waters. On the other hand, the occurrence of Coccolithus pelagicus indicates the influence of cold, nutrient-rich sub-Antarctic surface waters. A more mixed water column initiated at ~2.4 Ma, and a consequent productivity increase led to the gradual reduction of the Discoaster species, until their extinction at 1.91 Ma. This period was characterized by the low values of the Florisphaera profunda index and high abundances of upper photic zone flora, indicative of nutrient-rich surface water conditions. High productivity at the location during this period could have also been amplified by localized upwelling events driven by the Mozambique Channel eddies

    Orbital forcing and evolution of the Southern African Monsoon from late Miocene to early Pliocene

    Get PDF
    The late Miocene-early Pliocene (7.4-4.5 Ma) is a key interval in Earth's history where intense reorganization of atmospheric and ocean circulation occurred within a global cooling scenario. The Southern African monsoon (SAFM) potentially played an important role in climate systems variability during this interval. However, the dynamics of this important atmospheric system is poorly understood due to the scarcity of continuous records. Here, we present an exceptional continuous late Miocene to early Pliocene reconstruction of SAFM based on elemental geochemistry (Ca/Ti and Si/K ratios), stable isotope geochemistry (δ18O and δ13C recorded in the planktonic foraminifera Orbulina universa), and marine sediment grain size data from the International Ocean Discovery Program (IODP) Site U1476 located at the entrance of the Mozambique Channel. Spectral characteristics of the Si/K ratio (fluvial input) was used to identify the main orbital forcing controlling SAFM. Precession cycles governed precipitation from 7.4 to ∼6.9 Ma and during the early Pliocene. From ∼6.9 to ∼5.9 Ma, the precession and long eccentricity cycles drove the SAFM. The major Antarctic ice sheet expansion across this interval appear to influence the isotopic records of O. universa imprinting its long-term variability signal as a response to the ocean and atmospheric reorganization. Precession cycles markedly weakened from 5.9 to 5.3 Ma, almost the same period when the Mediterranean Outflow Water ceased. These findings highlight important teleconnections among the SAFM, Mediterranean Sea, and other tropical regions

    Data report: evaluation of shipboard magnetostratigraphy by alternating field demagnetization of discrete samples, Expedition 361, Site U1475

    Get PDF
    The paleomagnetic shipboard data of International Ocean Discovery Program Site U1475, with a record reaching back to approximately 7 Ma, allowed for the identification of major magnetic polarity chrons and subchrons back to ~3.5 Ma. However, the natural remanent magnetization (NRM) was very weak, and transitional intervals with unclear polarity were as thick as several meters. The midpoints of these transitional intervals were reported in the shipboard results without decimal places because of the poor data quality. To evaluate and possibly refine the shipboard magnetostratigraphy, subsampling was performed across the polarity transitions. Detailed alternating field (AF) demagnetization experiments were conducted on these discrete samples and were complemented by anhysteretic remanent magnetization acquisition measurements and subsequent demagnetization. AF demagnetization data of NRM were analyzed using anchored principal component analysis (PCA) to obtain the characteristic remanent magnetization. These PCA results generally confirm the smoothed signal across polarity transitions at Site U1475. However, the midpoint depths of the top of the Keana Subchron, the Gauss-Matuyama and Matuyama-Brunhes boundaries, and the base of the Olduvai Subchron were adjusted

    Die spätneogene bis quartäre Paläoproduktivität des westlichen Indischen Ozeans und des östlichen Südatlantiks - Rekonstruktion aus Coccolithophoridengemeinschaften und Coccolithengeochemie

    No full text
    Recent productivity reconstructions off South Africa have demonstrated the link between climate perturbations and coccolithophore productivity, especially over the glacial/interglacial cycles. These studies suggested enhanced productivity during glacial periods reaching maxima during terminations, and fluctuating in concert with orbital periodicities, suggesting that long-termed climatic variability have controlled the productivity patterns in this region. However most of these studies have focused on the highly productive regions of the northern and eastern Indian Ocean, and the Benguela upwelling area of the South Atlantic, whereas productivity reconstructions outside of these high-nutrient environments remain relatively scarce. Thus this research fills this gap by investigating sediment cores collected off Tanzania, the Natal Valley, the Mozambique Channel, and the Walvis Ridge. The strategic positions of the selected study sites allowed inter-basin and latitudinal comparisons, and accordingly a comprehensive productivity reconstruction of the western Indian Ocean and the eastern South Atlantic over the past 500 kyr, and across the Plio-Pleistocene transition. The coccolithophore assemblage composition and species distributions, preservation, and coccolith fraction geochemistry provided the groundwork for this reconstruction

    Nannofossil abundance from IODP site 361-U1476 (2.85-1.85 Ma)

    No full text
    A detailed paleoenvironment reconstruction from the Mozambique Channel, western Indian Ocean, based on the calcareous nannoplankton assemblages was conducted for the interval between 2.85 and 1.85 Myr. This study covers the period during which the successive extinction of the last five species of discoasters occurred. New productivity data obtained from the abundances of the Discoaster species (Discoaster brouweri, D. triradiatus, D. pentaradiatus, D. surculus, and D. tamalis) and other indicative calcareous nannoplankton taxa showed abundance variations, which were at paced with the 100, 41, and 23 kyr astronomical periodicities. A shift in the productivity and water-column stratification proxies occurred at ~2.4 Ma, after the onset of the Northern Hemisphere glaciation. Here we propose that the variability recorded at International Ocean Discovery Program Site U1476 reflects the interplay between forcing associated with warm tropical Pacific and cold southern ocean influences. The former is shown by consistent occurrence of warm water taxa (Calcidiscus leptoporus, Oolithotus spp., Rhabdosphaera clavigera, Syracosphaera spp., Umbellosphaera spp.), typical of Indonesian Throughflow surface waters. On the other hand, the occurrence of Coccolithus pelagicus indicates the influence of cold, nutrient-rich sub-Antarctic surface waters. A more mixed water column initiated at ~2.4 Ma, and a consequent productivity increase led to the gradual reduction of the Discoaster _species, until their extinction at 1.91 Ma. This period was characterized by the low values of the _Florisphaera profunda index and high abundances of upper photic zone flora, indicative of nutrient-rich surface water conditions. High productivity at the location during this period could have also been amplified by localized upwelling events driven by the Mozambique Channel eddies
    corecore