9 research outputs found

    Experimental Investigation of the Wind Turbine Blade Root Flow

    No full text
    Several methods from experimental to analytical are used to investigate the aerodynamics of a horizontal axis wind turbine. To understand 3D and rotational effects at the root region of a wind turbine blade, correct modeling of the flow field is essential. Aerodynamic models need to be validated by accurate experimental data. In this paper, the experimental results of the aerodynamic behavior of a model wind turbine blade, by focusing on the blade root flow, are presented. The measurements are performed on a 2 bladed rotor having 1 m radius by means of Stereo Particle Image Velocimetry in a wind tunnel. The spanwise velocity distribution on the suction side of the blade is determined in detail. It shows a complex flow pattern in the root region and positive spanwise flow component apparent at radial stations beyond r/R=0.4 at the leading edge (z/c=0.25).Aerodynamics, Wind Energy & PropulsionAerospace Engineerin

    CFD Simulation of the NREL Phase VI Rotor

    No full text

    BI 5700, a Selective Chemical Inhibitor of IκB Kinase 2, Specifically Suppresses Epithelial-Mesenchymal Transition and Metastasis in Mouse Models of Tumor Progression

    No full text
    Increasing evidence suggests that processes termed epithelial-mesenchymal transitions (EMTs) play a key role in therapeutic resistance, tumor recurrence, and metastatic progression. NF-κB signaling has been previously identified as an important pathway in the regulation of EMT in a mouse model of tumor progression. However, it remains unclear whether there is a broad requirement for this pathway to govern EMT and what the relative contribution of IKK family members acting as upstream NF-κB activators is toward promoting EMT and metastasis. To address this question, we have used a novel, small-molecule inhibitor of IκB kinase 2 (IKK2/IKKβ), termed BI 5700. We investigated the role of IKK2 in a number of mouse models of EMT, including TGFβ-induced EMT in the mammary epithelial cell line EpRas, CT26 colon carcinoma cells, and 4T1 mammary carcinoma cells. The latter model was also used to evaluate in vivo activities of BI 5700.We found that BI 5700 inhibits IKK2 with an IC50 of 9 nM and was highly selective as compared to other IKK family members (IKK1, IKKε, and TBK1) and other kinases. BI 5700 effectively blocks NF-κB activity in EpRas cells and prevents TGFβ-induced EMT. In addition, BI 5700 reverts EMT in mesenchymal CT26 cells and prevents EMT in the 4T1 model. Oral application of BI 5700 significantly interferes with metastasis after mammary fat-pad injection of 4T1 cells, yielding fewer, smaller, and more differentiated metastases as compared to vehicle-treated control animals. We conclude that IKK2 is a key regulator of both the induction and maintenance of EMT in a panel of mouse tumor progression models and that the IKK2 inhibitor BI 5700 constitutes a promising candidate for the treatment of metastatic cancers
    corecore