118 research outputs found

    Rotating Black Holes in Higher Dimensional Brane Worlds

    Full text link
    A black string generaliztion of the Myers-Perry N dimensional rotating black hole is considered in an (N+1) dimensional Randall-Sundrum brane world. The black string intercepts the (N-1) brane in a N dimensional rotating black hole. We examine the diverse cases arising for various non-zero rotation components and obtain the geodesic equations for these space-time. The asymptotics of theresulting brane world geometries and their implications are discussed.Comment: 23 pages, latex, sections rewritten and references adde

    Escape of black holes from the brane

    Full text link
    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation, that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the `black hole plus brane' system evolves once the black hole is given an initial velocity, that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes.Comment: 4 pages, 6 figure

    Pair creation of higher dimensional black holes on a de Sitter background

    Full text link
    We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstrom-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, that describe respectively a pair accelerated by a string and by an electromagnetic field, are not know yet in a higher dimensional spacetime.Comment: 10 pages; 1 figure included; RexTeX4. v2: References added. Published version. v3: Typo in equation (46) fixe

    Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter vacua in arbitrary dimension

    Full text link
    Maximally extended, explicit and regular coverings of the Schwarzschild - de Sitter family of vacua are given, first in spacetime (generalizing a result due to Israel) and then for all dimensions DD (assuming a D2D-2 sphere). It is shown that these coordinates offer important advantages over the well known Kruskal - Szekeres procedure.Comment: 12 pages revtex4 5 figures in color. Higher resolution version at http://www.astro.queensu.ca/~lake/regularcoordinates.pd

    Coulomb and quantum oscillator problems in conical spaces with arbitrary dimensions

    Get PDF
    The Schr\"odinger equations for the Coulomb and the Harmonic oscillator potentials are solved in the cosmic-string conical space-time. The spherical harmonics with angular deficit are introduced. The algebraic construction of the harmonic oscillator eigenfunctions is performed through the introduction of non-local ladder operators. By exploiting the hidden symmetry of the two-dimensional harmonic oscillator the eigenvalues for the angular momentum operators in three dimensions are reproduced. A generalization for N-dimensions is performed for both Coulomb and harmonic oscillator problems in angular deficit space-times. It is thus established the connection among the states and energies of both problems in these topologically non-trivial space-times.Comment: 15 page

    Conformal Black Hole Solutions of Axi-Dilaton Gravity in D-dimensions

    Get PDF
    Static, spherically symmetric solutions of axi-dilaton gravity in DD dimensions is given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant ω\omega and an axion-dilaton coupling parameter kk. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one parameter family of black hole solutions in the scale invariant limit.Comment: 6 PAGES, Rev-tex file, no figures, to appear in Phys-Rev

    Hidden Symmetry of Higher Dimensional Kerr-NUT-AdS Spacetimes

    Get PDF
    It is well known that 4-dimensional Kerr-NUT-AdS spacetime possesses the hidden symmetry associated with the Killing-Yano tensor. This tensor is "universal" in the sense that there exist coordinates where it does not depend on any of the free parameters of the metric. Recently the general higher dimensional Kerr-NUT-AdS solutions of the Einstein equations were obtained. We demonstrate that all these metrics with arbitrary rotation and NUT parameters admit a universal Killing-Yano tensor. We give an explicit presentation of the Killing-Yano and Killing tensors and briefly discuss their properties.Comment: 4 pages, some discussion and references are adde

    Black p-Branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    Full text link
    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de-sitter spacetime. We determine the total mass / energy enclosed in a thin-shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied our analysis shows that BpB can be considered excited states of black holes. An event horizon r+r_{+} versus charge square Q2Q^{2} plot \ for the BpB reveals such a transition where r+r_{+} is related to the horizon radius rhr_{h} of the black hole (BH) both with the common charge % Q. Comment: 10 pages, 1 figure, updated version. Final version to be published in EPJ

    Superradiant instability of large radius doubly spinning black rings

    Full text link
    We point out that 5D large radius doubly spinning black rings with rotation along S^1 and S^2 are afflicted by a robust instability. It is triggered by superradiant bound state modes. The Kaluza-Klein momentum of the mode along the ring is responsible for the bound state. This kind of instability in black strings and branes was first suggested by Marolf and Palmer and studied in detail by Cardoso, Lemos and Yoshida. We find the frequency spectrum and timescale of this instability in the black ring background, and show that it is active for large radius rings with large rotation along S^2. We identify the endpoint of the instability and argue that it provides a dynamical mechanism that introduces an upper bound in the rotation of the black ring. To estimate the upper bound, we use the recent black ring model of Hovdebo and Myers, with a minor extension to accommodate an extra small angular momentum. This dynamical bound can be smaller than the Kerr-like bound imposed by regularity at the horizon. Recently, the existence of higher dimensional black rings is being conjectured. They will be stable against this mechanism.Comment: 21 pages, 3 figures. Overall minor improvements in discussions added. Matches published version in PR

    On Black-Brane Instability In an Arbitrary Dimension

    Full text link
    The black-hole black-string system is known to exhibit critical dimensions and therefore it is interesting to vary the spacetime dimension DD, treating it as a parameter of the system. We derive the large DD asymptotics of the critical, i.e. marginally stable, string following an earlier numerical analysis. For a background with an arbitrary compactification manifold we give an expression for the critical mass of a corresponding black brane. This expression is completely explicit for Tn{\bf T}^n, the nn dimensional torus of an arbitrary shape. An indication is given that by employing a higher dimensional torus, rather than a single compact dimension, the total critical dimension above which the nature of the black-brane black-hole phase transition changes from sudden to smooth could be as low as D11D\leq 11.Comment: 1+14 pages, 2 eps figures. Replaced with the published versio
    corecore