1,817 research outputs found
Excellent buffer layer for growing high-quality Y-Ba-Cu-O thin films
Eu2CuO4 (ECO) has been used as a buffer layer for growing of YBa2Cu3O7-ä (YBCO) thin films on SrTiO3(100) and Y-stabilized ZrO2(100) substrates. The epitaxy, crystallinity, and surface of YBCO thin films have been significantly improved by using ECO buffer layer as investigated by x-ray diffraction, rocking curves, scanning electron microscope, surface step profiler, and x-ray small-angle reflection. The best value of the full width at half-maximum of the YBCO(005) peak can be greatly reduced down to less than 0.1°. The scanning-electron-microscope photos indicate a very smooth surface for the YBCO thin films. The average roughness is less than 5 nm over a wide scanning region of 2000 ìm. The results of x-ray small-angle reflection indicate a very clear and flat interface between YBCO and ECO layers. Meanwhile, the resistivity of ECO is about 20 times higher than that of PrBa2Cu3Oy at the boiling point of liquid nitrogen. Our results suggest that ECO should be a good barrier candidate for fabricating high-Tc superconductor junctions.published_or_final_versio
Electron acceleration associated with the magnetic flux pileup regions in the near-Earth plasma sheet: A multicase study
Using the Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations, we study electron acceleration (<30 keV) in the magnetic flux pileup regions (FPRs) in the near-Earth plasma sheet (X ~ –10 RE). We present three cases of FRPs associated with dipolarization fronts and substorm dipolarization. Based on the characteristics of the magnetic field, we defined the magnetic field enhancement region (MFER) as the magnetic field with significant ramp that is usually observed near the dipolarization front boundary layer. On the other side, the increased magnetic field without a significant ramp is the rest of a FPR. Our results show that betatron acceleration dominates for 10–30 keV electrons inside the MFER, whereas Fermi acceleration dominates for 10–30 keV electrons inside the rest of the FPR. Betatron acceleration is caused by the enhancement of the local magnetic field, whereas Fermi acceleration is related to the shrinking length of magnetic field line. These accelerated electrons inside the FPRs in the near-Earth tail play a potentially important role in the evolution of the Earth's electron radiation belt and substorms
Effect of chloride-induced corrosion on the bond behaviors between steel strands and concrete
The corrosion of steel strands due to the chloride contamination is one of the most common causes for the degradation of prestressed concrete infrastructure. In this paper, an experimental study was performed to investigate the bond behaviors between steel strands and concrete after suffered the chloride corrosion. Total twenty central and off-center pull-out specimens with different corrosion levels were prepared and tested, in which the electrochemical acceleration method was employed to induce various corrosion levels. The effects of corrosion rate, stirrup configuration and holding condition of concrete to the steel strands on the bond behaviors of steel strands were studied and compared, in terms of the failure mode, bond-slip relationship, bond strength, and bond toughness. The results show that both the ultimate bond strength and characteristic bond strength decreased with the increase of corrosion degree. The presence of stirrups can significantly enhance the bond performance, indicating the more ductile failure characteristic and increased bond toughness. Moreover, the prediction results using empirical and analytical models are also compared with the experimental results to verify their applicability and accuracies in predicting the bond strength of steel strands after corrosion
Tectonic affinity of the west Qinling terrane (central China): North China or Yangtze?
[33] Neogene (̃14 Ma) basaltic magmatism has occurred in west Qinling, at the northeastern corner of the Tibetan Plateau. Furthermore, U-Pb ages and Hf isotopic data of xenocrystic zircons indicate that the unexposed Neoarchean (2.7-2.5 Ga) basement beneath the Phanerozoic outcrops in west Qinling has affinities with the southern margin of the north China block. The basement has a complex evolution, including the addition of juvenile mantle material at ̃2.7- 2.4 Ga and 1.1-0.8 Ga and reworking at ̃1.8 Ga and possibly at 1.4 Ga. Phanerozoic thermal events at 320-300 Ma, 230 Ma, and 160 Ma also have affected the basement. We interpret the west Qinling orogenic terrane as originally separated from the north China block, joined to the northern Yangtze block during the Meso-Neoproterozoic, and finally involved in the northward subduction and collision of the Yangtze block in the Paleozoic and early Mesozoic and subsequent lithospheric extension in the Jurassic. © 2010 by the American Geophysical Union.published_or_final_versio
Palaeoenvironment of mid- to late Holocene loess deposit of the southern margin of the Tarim Basin, NW China
Holocene environmental history in the Tarim Basin and the Taklimakan Desert is known mainly froth isolated eolian and lacustrine deposits and remain puzzling. Here we present an adequately preserved loess section, covering the past 5000 years, at a highland (2,850 m a.s.l) on the northern slope of Kunlun Mountains. Pollen preserved in the section reveal a drying trend with significant moisture fluctuations around 3000-2600 cal yr BP and 1800 cal yr BP at the study site. Comparing the pollen, grain size from the same section provides a different scene occurred in the Tarim basin and the Taklimakan desert. Comparison of grain size to A/C ration of pollen suggests that active sand southward shifting in south margin of the desert is coincident with increasing moisture condition at the section locality, implying a casual link. This moisture pattern occurred at the upper and lower elevation of the slope is best explained by the vertical variation of local precipitation along the slope
Fabrication of Densely Packed AlN Nanowires by a Chemical Conversion of Al2O3Nanowires Based on Porous Anodic Alumina Film
Porous alumina film on aluminum with gel-like pore wall was prepared by a two-step anodization of aluminum, and the corresponding gel-like porous film was etched in diluted NaOH solution to produce alumina nanowires in the form of densely packed alignment. The resultant alumina nanowires were reacted with NH3and evaporated aluminum at an elevated temperature to be converted into densely packed aluminum nitride (AlN) nanowires. The AlN nanowires have a diameter of 15–20 nm larger than that of the alumina nanowires due to the supplement of the additional evaporated aluminum. The results suggest that it might be possible to prepare other aluminum compound nanowires through similar process
Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study
The Earth's magnetopause is highly variable in location and shape and is modulated by solar wind conditions. On 8 March 2012, the ARTEMIS probes were located near the tail current sheet when an interplanetary shock arrived under northward interplanetary magnetic field conditions and recorded an abrupt tail compression at ∼(‐60, 0, ‐5) RE in Geocentric Solar Ecliptic coordinate in the deep magnetotail. Approximately 10 minutes later, the probes crossed the magnetopause many times within an hour after the oblique interplanetary shock passed by. The solar wind velocity vector downstream from the shock was not directed along the Sun‐Earth line but had a significant Y component. We propose that the compressed tail was pushed aside by the appreciable solar wind flow in the Y direction. Using a virtual spacecraft in a global magnetohydrodynamic (MHD) simulation, we reproduce the sequence of magnetopause crossings in the X‐Y plane observed by ARTEMIS under oblique shock conditions, demonstrating that the compressed magnetopause is sharply deflected at lunar distances in response to the shock and solar wind VY effects. The results from two different global MHD simulations show that the shocked magnetotail at lunar distances is mainly controlled by the solar wind direction with a timescale of about a quarter hour, which appears to be consistent with the windsock effect. The results also provide some references for investigating interactions between the solar wind/magnetosheath and lunar nearside surface during full moon time intervals, which should not happen in general
Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity
- …