70 research outputs found

    A New Caspase-8 Isoform Caspase-8s Increased Sensitivity to Apoptosis in Jurkat Cells

    Get PDF
    Caspase-8 is a key initiator of death receptor-induced apoptosis. Here we report a novel short isoform of caspase-8 (caspase-8s), which encodes the first (Death Effector Domain) DED and part of the second DED, missing the C-terminal caspase domain. In vivo binding assays showed that transfected caspase-8s bound to (Fas-associated death domain protein) FADD, the adaptor protein in (death-induced signal complex) DISC. To investigate the potential effects of caspase-8s on cell apoptosis, Jurkat cells were stably transfected with caspase-8s. Overexpression of caspase-8s increased sensitivity to the apoptotic stimuli, Fas-agonistic antibody CH11. These results suggest that caspase-8s may act as a promoter of apoptosis through binding to FADD and is involved in the regulation of apoptosis. In addition, the results also indicate that the first DED was an important structure mediating combination between caspase-8 and FADD

    Orbital-angular-momentum fluorescence emission based on photon–electron interaction in a vortex field of an active optical fiber

    Get PDF
    We develop a model of interaction between photons and electrons in an active vortex field, which can generate a fluorescence spectrum with the characteristics of orbital angular momentum (OAM). In an active optical fiber, our findings generalize the notion of photon–electron interaction and point to a new kind of OAM-mode broad-spectrum light source, which could be interpreted in two processes: one microscopically is the excitation of OAM-carrying photons based on the photon–electron interaction; the other macroscopically is the emission and transmission of a donut-shaped fluorescence in a vortex field with a spiral phase wavefront in a ring-core active fiber. Here we present a straightforward experimental method that the emission of broad-spectrum fluorescence with an OAM feature is actualized and validated in a ring-core erbium-doped fiber. The spectrum has a broad spectral width up to 50 nm. Furthermore, four wavelengths are extracted from the fluorescence spectrum and superimposed with their corresponding Gaussian beams, from which the spiral-shaped interferograms of OAM modes in a broad spectrum are identified with high purity. The application of the OAM-based fluorescence light source may range from classical to quantum information technologies, and enable high-capacity communication, high-sensitivity sensing, high-resolution fluorescence imaging, etc

    Over 100 mW stable low-noise single-frequency ring-cavity fiber laser based on a saturable absorber of Bi/Er/Yb co-doped silica fiber

    Get PDF
    Two kinds of Yb-doped fibers were fabricated, namely, Yb: YAG crystal-derived silica fibers (YCDSFs) with a gain coefficient of 6.0 dB/cm, and Bi/Er/Yb co-doped silica fibers having a Yb concentration of 0.1310^26 ion/m^3. Based on these fibers, a ring-cavity single-frequency fiber laser (SFFL) has been constructed, in which the YCDSF was used as a gain medium and the Bi/Er/Yb co-doped fiber acted as a saturable absorber. It has been demonstrated that the SFFL had an over 100 mW output at 1030 nm, slope-efficiency of up to 18.3%, and an optical signal-to-noise ratio of over 63 dB. The fluctuation of the output power of the laser was less than 0.65% of 103.5 mW within 10 hrs and no mode-hopping was observed for 5 hrs. The SFFL had a linewidth <7.5 kHz at the maximum output power, and the measured relative intensity noise was lower than 142 dB/Hz at a frequency above 1.0 MHz. The results indicate that the ring-cavity SFFL built could be used as a laser source for applications in a high-power fiber laser, and high-precision optical fiber sensing and detection

    Broadband high-gain Yb : YAG crystal-derived silica fiber for low noise tunable single-frequency fiber laser

    Get PDF
    An over 75 nm broadband spectrum with a gain per unit length of >2 dB/cm was obtained from a homemade Yb: YAG crystal-derived silica fiber (YCDSF) with Yb-doping concertation of 6.57 wt.%. Using a 13-cm-long YCDSF, a low-noise wavelength-tunable single-frequency fiber laser has been constructed, enabling a single longitudinal mode oscillation from 1009 to 1070 nm. In particular, in the 1023-1056 nm waveband, the laser operating at any wavelength exhibited a maximum output power over 37 mW with power fluctuations below 0.38%, a slope efficiency >8%, and an optical signal-to-noise ratio higher than 60 dB. A linewidth of less than 2.8 kHz was also observed at the maximum pump powers, and relative intensity noise was as low as -155 dB/Hz at frequencies above 1.0 MHz. These results indicate that the YCDSFs with broadband high-gain characteristics are promising for wavelength-tunable fiber lasers in applications such as optical coherence tomography, precision metrology, nonlinear frequency conversion, and so on

    Modeling Hidden Nodes Collisions in Wireless Sensor Networks: Analysis Approach

    Full text link
    This paper studied both types of collisions. In this paper, we show that advocated solutions for coping with hidden node collisions are unsuitable for sensor networks. We model both types of collisions and derive closed-form formula giving the probability of hidden and visible node collisions. To reduce these collisions, we propose two solutions. The first one based on tuning the carrier sense threshold saves a substantial amount of collisions by reducing the number of hidden nodes. The second one based on adjusting the contention window size is complementary to the first one. It reduces the probability of overlapping transmissions, which reduces both collisions due to hidden and visible nodes. We validate and evaluate the performance of these solutions through simulations

    Low-noise-figure and high-purity 10 vortex modes amplifier based on configurable pump modes

    Get PDF
    We have explored an orbital angular momentum (OAM) amplifier of 10 vortex modes under different-order OAM pump modes, i.e. OAM0, OAM1, and OAM2. The all-fiber amplification system consists of an active few-mode erbium-doped fiber (FM-EDF), a mode selective pump (MSP), and a mode selective signal (MSS). These mode selective components are based on fused-taper mode selective couplers (MSC) under different wavelengths fabricated by a passive ring-core fiber (RCF). Under different-order mode pumps, the OAM amplifier experimentally exhibits mode gains (MGs) above 15 dB for 10 vortex modes with the mode purities only 89%, essentially in line with the simulation results. Especially when the signal-mode profiles are better matched to the pump-mode profiles, i.e. the OAM pumps with the same order as signals, the obtained MGs are all over 20.2 dB and the amplified OAM mode purity is up to 97%; the acquired noise figures (NFs) are <4.9 dB and even the minimum NF is 3.2 dB. The results reveal that the OAM amplifier shows low-NF and high-purity characteristics under configurable pump modes in C-band. The amplified high-order OAM mode could be promising for uses in the long-distance mode division multiplexing (MDM) and in mitigation of the upcoming capacity crunch in optical fiber communication

    Oral Delivery of the Sj23LHD-GST Antigen by Salmonella typhimurium Type III Secretion System Protects against Schistosoma japonicum Infection in Mice

    Get PDF
    Schistosomiasis japonica is a zoonotic parasitic disease and occurs predominantly in Southeast Asia and China. Using a simple, cheap, yet efficient oral method to deliver the vaccine antigen would benefit to control its transmission in that the oral vaccine could be made into a preparation and mixed with feedstuffs of livestock hosts. In this study, we used an attenuated S. typhimurium strain VNP20009, whose safety has been demonstrated in phase I clinical trial, to express the bivalent Schistosoma japonicum antigen Sj23LHD-GST by an intracellular activated promoter (nirB) and deliver it to host cells through type III secretion system. After oral vaccination of this recombinant strain, efficient protection against S. japonicum challenge was induced in mice. Mean while, granuloma formation in the liver was improved significantly in the immunized mice. This protective immune response was Th1 specific type as evidenced by increase in the production of IL-12 and IFN-γ. This work provides an alternative S. japonicum vaccine for livestock and humans
    corecore