33,772 research outputs found

    Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires

    Get PDF
    Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces

    Opposite spin accumulations on the transverse edges by the confining potential

    Full text link
    We show that the spin-orbit interaction induced by the boundary confining potential causes opposite spin accumulations on the transverse edges in a zonal two-dimensional electron gas in the presence of external longitudinal electric field. While the bias is reversed, the spin polarized direction is also reversed. The intensity of the spin accumulation is proportional to the bias voltage. In contrast to the bulk extrinsic and intrinsic spin Hall effects, the spin accumulation by the confining potential is almost unaffected by impurity and survives even in strong disorder. The result provides a new mechanism to explain the recent experimental data.Comment: 5 pages, 6 figure

    Electro-diffusion in a plasma with two ion species

    Full text link
    Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion (ICF) capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratio is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.Comment: Submitted to Phys. Plasmas on 2012-03-06 (revised version 05/13/2012

    A Lagrangian kinetic model for collisionless magnetic reconnection

    Get PDF
    A new fully kinetic system is proposed for modeling collisionless magnetic reconnection. The formulation relies on fundamental principles in Lagrangian dynamics, in which the inertia of the electron mean flow is neglected in the expression of the Lagrangian, rather then enforcing a zero electron mass in the equations of motion. This is done upon splitting the electron velocity into its mean and fluctuating parts, so that the latter naturally produce the corresponding pressure tensor. The model exhibits a new Coriolis force term, which emerges from a change of frame in the electron dynamics. Then, if the electron heat flux is neglected, the strong electron magnetization limit yields a hybrid model, in which the electron pressure tensor is frozen into the electron mean velocity.Comment: 15 pages, no figures. To Appear in Plasma Phys. Control. Fusio

    Magnetization and susceptibility of ferrofluids

    Full text link
    A second-order Taylor series expansion of the free energy functional provides analytical expressions for the magnetic field dependence of the free energy and of the magnetization of ferrofluids, here modelled by dipolar Yukawa interaction potentials. The corresponding hard core dipolar Yukawa reference fluid is studied within the framework of the mean spherical approximation. Our findings for the magnetic and phase equilibrium properties are in quantitative agreement with previously published and new Monte Carlo simulation data.Comment: 8 pages including 4 figure

    Multiobjective synchronization of coupled systems

    Get PDF
    Copyright @ 2011 American Institute of PhysicsSynchronization of coupled chaotic systems has been a subject of great interest and importance, in theory but also various fields of application, such as secure communication and neuroscience. Recently, based on stability theory, synchronization of coupled chaotic systems by designing appropriate coupling has been widely investigated. However, almost all the available results have been focusing on ensuring the synchronization of coupled chaotic systems with as small coupling strengths as possible. In this contribution, we study multiobjective synchronization of coupled chaotic systems by considering two objectives in parallel, i. e., minimizing optimization of coupling strength and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach. The constraints on the coupling form are also investigated by formulating the problem into a multiobjective constraint problem. We find that the proposed evolutionary method can outperform conventional adaptive strategy in several respects. The results presented in this paper can be extended into nonlinear time-series analysis, synchronization of complex networks and have various applications

    The Use of Gamma-ray Bursts as Direction and Time Markers in SETI Strategies

    Get PDF
    When transmitting a signal over a large distance it is more efficient to send a brief beamed signal than a continuous omni-directional transmission but this requires that the receiver knows where and when to look for the transmission. For SETI, the use of various natural phenomena has previously been suggested to achieve the desired synchronization. Here it is proposed that gamma-ray bursts may well the best ``synchronizers'' of all currently known phenomena due to their large intrinsic luminosities, high occurrence rate, isotropic sky distribution, large distance from the Galaxy, short duration, and easy detectability. For targeted searches, precise positions for gamma-ray bursts are required together with precise distance measurements to a target star. The required burst position determinations are now starting to be obtained, aided in large part by the discovery of optical afterglows. Good distance measurements are currently available from Hipparcos and even better measurements should be provided by spacecraft now being developed. For non-targeted searches, positional accuracies simply better than a detector's field of view may suffice but the time delay between the detection of a gamma-ray burst and the reception of the transmitted signal cannot be predicted in an obvious way.Comment: 8 pages, accepted for publication in PAS

    The Nystrom plus Correction Method for Solving Bound State Equations in Momentum Space

    Get PDF
    A new method is presented for solving the momentum-space Schrodinger equation with a linear potential. The Lande-subtracted momentum space integral equation can be transformed into a matrix equation by the Nystrom method. The method produces only approximate eigenvalues in the cases of singular potentials such as the linear potential. The eigenvalues generated by the Nystrom method can be improved by calculating the numerical errors and adding the appropriate corrections. The end results are more accurate eigenvalues than those generated by the basis function method. The method is also shown to work for a relativistic equation such as the Thompson equation.Comment: Revtex, 21 pages, 4 tables, to be published in Physical Review

    Thermal X-Ray Pulses Resulting From Pulsar Glitches

    Get PDF
    The non-spherically symmetric transport equations and exact thermal evolution model are used to calculate the transient thermal response to pulsars. The three possible ways of energy release originated from glitches, namely the `shell', `ring' and `spot' cases are compared. The X-ray light curves resulting from the thermal response to the glitches are calculated. Only the `spot' case and the `ring' case are considered because the `shell' case does not produce significant modulative X-rays. The magnetic field (B⃗\vec B) effect, the relativistic light bending effect and the rotational effect on the photons being emitted in a finite region are considered. Various sets of parameters result in different evolution patterns of light curves. We find that this modulated thermal X-ray radiation resulting from glitches may provide some useful constraints on glitch models.Comment: 48 pages, 20 figures, submitted to Ap
    • 

    corecore