611 research outputs found

    A case study in the history of neurology

    Get PDF
    We review the case of a young man who developed a constellation of symptoms and signs—bizarre behavior, seizures, abnormal movements, and autonomic instability—that evaded diagnosis at the time of presentation. We use this case to explore the way medical knowledge changes over time. Despite the dramatic advances in our understanding of neurological diseases in recent decades, physicians tend to approach diseases and diagnoses as if they were immutable. Our case reinforces how the diagnosis and treatment of disease are determined by an ever-changing historical context driven by the rapid expansion of medical knowledge. We discuss the implications of this realization and present strategies for navigating the boundaries of knowledge, both in practice and in principle

    Study of Doubly Heavy Baryon Spectrum via QCD Sum Rules

    Full text link
    In this work, we calculate the mass spectrum of doubly heavy baryons with the diquark model in terms of the QCD sum rules. The interpolating currents are composed of a heavy diquark field and a light quark field. Contributions of the operators up to dimension six are taken into account in the operator product expansion. Within a reasonable error tolerance, our numerical results are compatible with other theoretical predictions. This indicates that the diquark picture reflects the reality and is applicable to the study of doubly heavy baryons.Comment: 23 pages, 9 figures, minor corrections in expression

    Independent Eigenstates of Angular Momentum in a Quantum N-body System

    Get PDF
    The global rotational degrees of freedom in the Schr\"{o}dinger equation for an NN-body system are completely separated from the internal ones. After removing the motion of center of mass, we find a complete set of (2+1)(2\ell+1) independent base functions with the angular momentum \ell. These are homogeneous polynomials in the components of the coordinate vectors and the solutions of the Laplace equation, where the Euler angles do not appear explicitly. Any function with given angular momentum and given parity in the system can be expanded with respect to the base functions, where the coefficients are the functions of the internal variables. With the right choice of the base functions and the internal variables, we explicitly establish the equations for those functions. Only (3N-6) internal variables are involved both in the functions and in the equations. The permutation symmetry of the wave functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys. Rev. A 64, 0421xx (Oct. 2001

    Ammonia in a time of COVID-19. A submission of evidence to Defra/AQEG

    Get PDF
    A submission to the Air Quality Expert Group (AQEG), an expert committee of the Department for Environment, Food and Rural Affairs (Defra) • Ammonia gas (NH3) is a priority pollutant both as a precursor to particulate matter and for ecosystem impacts. • Three scenarios for UK emission reductions during COVID-19 in emission sectors, where activity is likely reduced ,have been assessed. • Total UK emissions of NH3 are likely to have decreased slightly (~2%), which is within the uncertainty and meteorological variability of the UK atmosphere. • Urban background and urban on road and roadside emissions of NH3 are likely to have decreased, by as much as 30% and 90% respectively compared with usual emissions before COVID-19. • Unratified data from three of the five UK automatic NH3 analysers (Auchencorth Moss, Chilbolton Observatory, and Manchester OSCA Observatory) show typical springtime NH3 concentrations across the UK. • Data from the non-automatic National Ammonia Monitoring Network will enable analysis at UK level in the months ahead. This includes roadside data from London Cromwell Rd. • Evidence gaps & future approaches are outlined. Future analysis of the Defra UKEAP rural networks proposed. • The key measurement gap is urban roadside NH3 (and PM ammonium) as there is only one long-term site in the UK measuring roadside NH3 concentrations. It is suggested that a roadside network of samplers and/or analysers are urgently put in place (perhaps aligned with the UK Urban NO2 Network; UUNN) to monitor NH3 at roadsides during and post COVID-19 lock down where possible

    Friction force on a vortex due to the scattering of superfluid excitations in helium II

    Full text link
    The longitudinal friction acting on a vortex line in superfluid 4^4He is investigated within a simple model based on the analogy between such vortex dynamics and that of the quantal Brownian motion of a charged point particle in a uniform magnetic field. The scattering of superfluid quasiparticle excitations by the vortex stems from a translationally invariant interaction potential which, expanded to first order in the vortex velocity operator, gives rise to vortex transitions between nearest Landau levels. The corresponding friction coefficient is shown to be, in the limit of elastic scattering (vanishing cyclotron frequency), equivalent to that arising from the Iordanskii formula. Proposing a simple functional form for the scattering amplitude, with only one adjustable parameter whose value is set in order to get agreement to the Iordanskii result for phonons, an excellent agreement is also found with the values derived from experimental data up to temperatures about 1.5 K. Finite values of the cyclotron frequency arising from recent theories are shown to yield similar results. The incidence of vortex-induced quasiparticle transitions on the friction process is estimated to be, in the roton dominated regime, about 50 % of the value of the friction coefficient, \sim8 % of which corresponds to roton-phonon transitions and \sim42 % to roton R+RR^+\leftrightarrow R^- ones.Comment: 15 pages, 4 figures; typos corrected, to be published in PR

    Development of a high sensitivity ammonia sensor: Phase 1 feasibility study report (01/05/18 – 31/08/18)

    Get PDF
    Gas sensor technologies for monitoring atmospheric concentrations of ammonia gas are reviewed and summarised in this report

    Measurement of ammonia emissions from temperate and sub-polar seabird colonies

    Get PDF
    The chemical breakdown of marine derived reactive nitrogen transported to the land as seabird guano represents a significant source of ammonia (NH3) in areas far from other NH3 sources. Measurements made at tropical and temperate seabird colonies indicate substantial NH3 emissions, with emission rates larger than many anthropogenic point sources. However, several studies indicate that thermodynamic processes limit the amount of NH3 emitted from guano, suggesting that the percentage of guano volatilizing as NH3 may be considerably lower in colder climates. This study undertook high resolution temporal ammonia measurements in the field and coupled results with modelling to estimate NH3 emissions at a temperate puffin colony and two sub-polar penguin colonies (Signy Island, South Orkney Islands and Bird Island, South Georgia) during the breeding season. These emission rates are then compared with NH3 volatilization rates from other climates. Ammonia emissions were calculated using a Lagrangian atmospheric dispersion model, resulting in mean emissions of 5 μg m-2 s-1 at the Isle of May, 12 μg m-2 s-1 at Signy Island and 9 μg m-2 s-1 at Bird Island. The estimated percentage of total guano nitrogen volatilized was 5% on the Isle of May, 3% on Signy and 2% on Bird Island. These values are much smaller than the percentage of guano nitrogen volatilized in tropical contexts (31-65%). The study confirmed temperature, wind speed and water availability have a significant influence on the magnitude of NH3 emissions, which has implications for reactive nitrogen in both modern remote regions and pre-industrial atmospheric composition and ecosystem interactions

    Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths

    Get PDF
    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+Kπ+π\gamma K^+K^-\pi^+\pi^-, γπ+ππ+π\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π\gamma K^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕK+K\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
    corecore