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 Executive Summary 

1. Concept and design of ammonia sensor 

 Gas sensor technologies have been reviewed and are summarised in this 
report. 

 A semiconductor type chemiresistor sensor best meets the criteria for high 
specificity to NH3 gas and high sensitivity (ppb detection limits for ambient air 
monitoring) and low-cost fabrication. These can be based on conducting 
polymers (e.g. polypyrrole, polyaniline), nanomolecules (e.g. graphene 
derivatives) or cellulose as the sensing platform. 

 The concept design (Figure 1) is a prototype chemiresistor ammonia sensor 
combining principles of passive diffusion sampling (e.g. CEH ALPHA sampler) 
to control rate of NH3 gas diffusion into the sensor, with resistivity changes from 
chemisorption of NH3 onto the sensing layer measured. 

 Two types of sensing layers have been tested: 1) citric acid coated cellulose 
filters and 2) fluorographene (FG) thin film on Zefluor PTFE membrane (in 
collaboration with Tata Institute of Fundamental Research, Hyderabad, India).  

 FG is recommended for further study due to tests by Tata showing:  
i) high specificity to NH3 (selective binding to Fluorine in FG),  
ii) low detection limits of down to 0.44 pM ammonium in solution,  
iii) linear response to variation in exposure time to NH3 gas,  
iv) higher sensitivity to NH4

+ over graphene oxide, graphene or 
fluorographene oxide, and   

v) reversibility of binding.  

 
 

 

Figure 1: Concept design of prototype chemiresistor-type sensor based on the CEH ALPHA 
sampler. The uptake rate of NH3 is a function of the diffusion path length (distance from 
PTFE membrane to sensor surface) and surface area of the sensor layer.  
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Gateway 1 recommendations 

1. Initial test results support the premise that atmospheric ammonia gas can be 
detected selectively.  

2. The key challenges are synthesis and coating of FG onto a suitable micro-electrode 
(e.g. screen printed or interdigitated). This can be done in collaboration with the Tata 
research group or with the University of Edinburgh (contacts in chemistry and 
electronics department). 

3. Some parts of proposal are achievable in this financial year, see table below. 

4. The authors think that the full funding should be released in order to progress. If we 
do not, then in the medium term, CEH will lose leadership in this core area of our 
science. 

 

  Achievable? Notes 
Phase 2:   
Prototype specification and build (Aug-Oct) By January 2018   
Phase 3: Prototype testing (Oct-Feb)      

Physical characterisation tests on ALPHAs or similar device with 
electrodes

By March 2018   

 Deployment of 5-10 units for alongside continuous NH3 analyser, 
DELTA and ALPHA to compare performance at short (10 mins to 
daily) to long-time scales (weekly to monthly)

IN 19/20   

Phase 4: Innovation outputs (Feb-Mar)       

Performance report for ammonia sensor. By March 2018 On laboratory tests 

 Plan for further development and testing at existing customer 
sites

IN 19/20   

 Plan for expansion/outsourcing and sale, if product near market-
ready.

tbd   
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 Project background 

There is enormous interest and technological advances in miniaturised gas sensors 
for air quality monitoring. In particular, numerous sensors have come onto the market 
in recent years for monitoring nitrogen dioxide (NO2) in cities. Of these, the AQMesh 
NO2 gas sensor (https://www.aqmesh.com/) is widely deployed across the UK and US 
for monitoring NO2 and to be deployed in a new ‘hyperlocal’ air quality network for 
London this year. 

A market need exists for a low-cost, high sensitivity (measures down to low ppb levels) 
miniaturised gas sensor for ammonia (NH3). A small number of ammonia sensors are 
currently available on the market, but all with low sensitivity, i.e. ppm range that are 
suited to industrial measurements (e.g. leak detection in refrigeration systems), but not 
for air quality monitoring (low ppb levels). These include the Alphasense NH3-A1 and 
NH3-B1, and Industrial Scientific’s personal single-gas detector GasBadge® Pro, 
Ventis™ Pro Series, and the MX6 iBrid, Radius™ BZ1 Area ammonia detectors.  

State of the art sensitive optical instruments for automatic online monitoring of 
ammonia such as the Picarro Cavity Ring-Down Spectroscopy (CRDS) 
(https://www.picarro.com/technology/) and Quantum Cascade laser (QCL) instruments 
(https://www.emerson.com/en-gb/) are too large to be portable, and too expensive to 
be deployed at many sites.  

Low-cost portable air sampling methods such as the CEH ALPHA (passive diffusion 
sampler) (Tang et al., 2001) and CEH DELTA samplers (active pumped sampling) 
(Sutton et al., 2001) developed are used widely to deliver on a large number of CEH 
CWI projects (~£150k per annum). They are also sold worldwide (see 
www.ceh.ac.uk/services/air-samplers, launched Jan 2017), but they are manual air 
sampling methods requiring offline analysis. These types of manual air samplers can 
only provide time-integrated average concentrations over a prescribed sampling period 
(usually weekly to monthly). They also require chemical analysis after sample 
collection so that the air concentrations are reported some time after the measurement. 

An ammonia sensor with similar levels of sensitivity, specificity and accuracy as the 
CEH ALPHA and DELTA will potentially offer the following advantages: 

1) potential to develop ammonia sensor networks, in the UK (complementing and 
enhancing existing UK networks) and worldwide (including ODA countries),  

2) real-time source attribution assessments, monitoring pollutant events and plumes, 
e.g. 

a. compliance monitoring:  Industrial Emissions Directive 2010/75/EU (IED) 
requires pig and poultry farms (above stated size thresholds) to reduce 
emissions using Best Available Techniques. The IED applies to around 70 % 
of the European poultry industry and around 25 % of the pigs industry 
(UNECE, 2010).  

b. ecosystem effects assessments: revised UNECE ‘Critical Levels’ (CLe) of 
NH3 concentrations under the Gothenburg protocol to protect sensitive 
vegetation and ecosystems (UNECE, 2007). These set limits of NH3 
concentrations to 1 µg NH3 m-3 and 3 µg NH3 m-3 annual mean for the 
protection of lichens-bryophytes and other vegetation, respectively (Cape et 
al., 2009b).  

https://www.aqmesh.com/
https://www.picarro.com/technology/
https://www.emerson.com/en-gb/
http://www.ceh.ac.uk/services/air-samplers
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3) incorporate temperature and humidity sensors to provide simultaneous climate data, 
important for linking climate change to air pollutant trends,  

4) potential for personal monitoring / medical applications (e.g. ammonia levels in 
exhaled breath as diagnostic tool, and  

5) potential to develop an app. for users to view and download data from the sensor. 
This could include for example setting thresholds (for ecosystem or human health) for 
sending automatic alerts to users.  

 

This project aims to review existing and emerging sensor technologies for detection of 
ammonia and incorporate principles of ambient ammonia passive diffusive sampling 
(CEH ALPHA sampler) to develop a sensitive and specific sensor for ammonia suitable 
for ambient monitoring (low ppb range) and in parallel develop a phone app. to view 
and download data from sensor. Development of partnerships with research agencies 
and industry with expertise in sensor technology will be considered. 
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 Anticipated Outcomes 2018 / 2019 

Phase 1: Scoping (Apr-Jul) £11.5K 

 review existing sensor technologies 

 make contact with relevant research groups with expertise in sensor 
technology  

 basic study of putting electrodes on current ALPHA samplers, perhaps could 
be planned to do early testing at Whim during the QA exercise (May-June) 

Outcome of phase 1 (01/08/2018) 

 Concept and design of ammonia sensor drawn up 

 Initial trial study results: use electrodes on current ALPHA samplers as sensor 
for ammonia  

 

Pending outcome from phase 1, progress to: 

Phase 2: Prototype specification and build (Aug-Oct) 

 

Phase 3: Prototype testing (Oct-Feb)  

 Physical characterisation tests on ALPHAs or similar device with electrodes 

 Deployment of 5-10 units for alongside continuous NH3 analyser, DELTA and 
ALPHA to compare performance at short (10 mins to daily) to long-time scales 
(weekly to monthly) 

 

Phase 4: Innovation outputs (Feb-Mar)   

 Performance report for ammonia sensor. 

 Plan for further development and testing at existing customer sites 

 Plan for expansion/outsourcing and sale, if product near market-ready. 
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 Review of ammonia gas sensors 

What is a gas sensor? A gas sensor comprises of a transducer and an active sensing 
surface for converting the chemical information into another form of electronic signal 
like frequency change, current change or voltage change (see reviews by (Timmer et 
al., 2005; Yunusa et al., 2014). 

Gas sensors are typically characterised by: 

 Small size 

 Low power consumption 

 Wireless 

Performance characteristics include properties such as sensitivity, selectivity, 
detection limit, response time and recovery time. 

 Sensitivity (S) determined as: Δf/Δc 

 S, expressed in terms of Hz/ppm or Hz/vol % 

 Δc = change in analyte concentration 

The main types of gas sensor technologies for ammonia and principle of operation are 
summarised in Table 1. 
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Table 1: Types of ammonia gas sensors. 

Type Sensing 
Platforms 

Mechanism Detection Sensitivity Specificity 
to NH3 

Catalytic Catalytic 
metal oxides 
(MO) 

Chemisorption and 
catalytic combustion: 
Reactivity of catalytic 
metals to NH3.  

Combustion of NH3 on 
catalytic surface at high 
temperatures (> 300oC). 

Resistivity: 

Measured by 
capacitor / resistor 
(wheatstone bridge). 

ppm 
range  

No – 
responds to 
all 
combustible 
gases 

Electrochemical Metal oxide 
(MO) e.g. 
TiO2, SnO2, 

ZnO2, WO3 

with Au and 
MoO3 

 

 

Chemisorption and 
redox reaction: 

NH3 entering the sensor 
undergoes an 
electrochemical reaction 
resulting in a change in 
electrical output. 

 

Amperometric: 
change in electric 
current 

Potentiometric: 
change in potential 
across the analyte 

Conductometric: 
change in electrolytic 
conductivity or 
resistivity 

ppm 
range 

No -
responds to 
NO 

Semiconductor  Metal oxides 
(MO) such 
as SnO2

 and 
AlO3

 

Chemisorption and 
oxidation: 

Oxidation of NH3 on 
sensing element 
increases conductivity. 

Requires elevated 
temperature (> 200oC) 

Conductance change ppm 
range 

No – 
responds to 
other gases 
and 
vapours. 

 

Conducting 
polymers 
(CP) 

Electrostatic interaction / 
adsorption and charge 
transfer. 

Polyaniline: acid-base 
interactions 

Polypyrrole: oxidation-
reduction 

 

Electronic 
transducers  

Electrochemical 

ppb to 
ppm  

Yes 

 Conducting 
polymers 
(CP): 

Nano-
molecules 

Graphene 
Graphene oxides 
Fluorographene 
Carbon nanotubes 
Cellulose-based 

Electronic 
transducers  

Electrochemical 

ppb to 
ppm  

Yes 

Optical  Optical: lasers, 
spectrographs. 

 

Optical absorbance  

 

 

Low ppb 
to ppm 
range 

Yes 

 

 

 

  

https://en.wikipedia.org/wiki/Potential
https://en.wikipedia.org/wiki/Analyte
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)
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 Catalytic sensors 

The theory behind catalytic sensors is that a combustible gas will burn at lower 
temperatures in the presence of a catalyst in a process called catalytic combustion. 
Most metal oxides and their compounds possess catalytic properties (Yunusa et al., 
2014).  

Catalytic gas sensors consist of two elements: a detector element (D) which contains 
catalytic material (e.g. hot wire, catalytic bead or micro-hotplate configuration) and is 
sensitive to combustible gases, and a compensator element (C) which is inert. 

Combustible gases will burn only on the detector element. When catalytic combustion 
occurs, the temperature of the bead increases and changes the resistivity of the wire. 
Combustible gases will not burn on the compensator—its’ temperature and resistance 
remain unchanged in the presence of combustible gases (Figure 1). 

 
Figure 1: An example basic measuring circuit in catalytic gas sensors (reproduced from 
Yunusa et al., 2014). 

 

Catalytic gas sensors are further characterised as pellistor-type and thermoelectric-
type sesnors.   

 

A Wheatstone bridge circuit is usually formed with both elements as shown in Figure 
2. A variable resistor (VR) is adjusted to maintain a state of balance of the bridge circuit 
in clean air free of combustible gases. When combustible gases are present, only the 
resistance of the detector element will rise, causing an imbalance in the bridge circuit, 
thus producing an output voltage signal (Vout). The output voltage signal is proportional 
to the concentration of combustible gases and gas concentration can be determined 
by measuring the output voltage 

Catalytic sensors are not specific to ammonia as it measures flammability of all 
combustible gases, not just ammonia. They are also very sensitive to poisoning by 
certain chemicals that will reduce the sensitivity and, under prolonged exposure, 
completely ruin the sensor. Halogen compounds (such as halogenated refrigerants 
and fire extinguisher compounds) will also temporarily inhibit the sensor. 
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Figure 2: An example basic wheatstone bridge measuring circuit in catalytic gas sensors 
(reproduced from Yunusa et al., 2014). 

 

 

Table 2: Catalytic ammonia sensors available on the market.  

Product Detection 
range 

Application Website 

SensAlert Plus series Ammonia 
sensors: 
823-0201-22 FM approved 
 

50 ppm process leak 
detection 

http://www.schauenburg-
tech.co.uk/assets/downloads/sensidyn
e-gas-detection-for-ammonia.pdf 
 

SensAlert Plus series Ammonia 
sensors: 
823-0201-21 FM approved 
 

100 ppm 

SensAlert Plus series Ammonia 
sensors: 
823-0201-41 FM approved 
 

300 ppm 

SensAlert Plus series Ammonia 
sensors: 
823-0201-42 FM approved 
 

500 ppm 

VQ41TSB 600 ppm process leak 
detection 

https://www.sgxsensortech.com/produc
ts-services/industrial-safety/pellistor-
sensors/ 
 

http://www.schauenburg-tech.co.uk/assets/downloads/sensidyne-gas-detection-for-ammonia.pdf
http://www.schauenburg-tech.co.uk/assets/downloads/sensidyne-gas-detection-for-ammonia.pdf
http://www.schauenburg-tech.co.uk/assets/downloads/sensidyne-gas-detection-for-ammonia.pdf
https://www.sgxsensortech.com/products-services/industrial-safety/pellistor-sensors/
https://www.sgxsensortech.com/products-services/industrial-safety/pellistor-sensors/
https://www.sgxsensortech.com/products-services/industrial-safety/pellistor-sensors/
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 Electrochemical sensors 

In electrochemical (EC) sensors, ammonia gas diffuses through a gas-permeable 
membrane to an electrode where it is either reduced or oxidised. The redox reaction 
at the electrode produces an electrical signal that is proportional to the gas 
concentrations. 

A typical EC sensor consists of a sensing electrode or working electrode and a counter 
electrode, separated by a thin layer of electrolyte (Figure 3).  

Electrochemical reaction with ammonia gas generates a current flow between the 
sensing and counter electrodes. The electrolyte facilitates the reaction between the 
electrode and gas and carries charge between the electrodes. 

 

 

Figure 3: Schematic of electrochemical sensor (reproduced from Reindl et al. 2002). 

 

 

The reference electrode maintains a constant voltage on the sensing electrode to 
compensate for the degradation of the electrolyte due to the reaction on the electrode 
surface, thereby extending the life of the sensor. 

The capillary diffusion barrier, filter and hydrophobic gas-permeable membrane 
together control the amount of gas entering the sensor that can react with the 
electrolyte and prevents the electrolyte from leaking out of the sensor. The filter may 
be necessary to reduce cross-sensitivity in certain situations and is typically activated 
charcoal. 

There are several variations on the specific electrochemical reaction used to detect 
ammonia. Some EC sensors depend on a straightforward oxidation reaction where 
ammonia (NH3) is converted into nitrogen (N2) and hydrogen “protons” (H+) at the 
sensing electrode. For every two molecules of ammonia that are oxidised, six electrons 
(e–) of electricity are also produced. This electrical current output is what is used by 
the instrument to determine the concentration of ammonia present. 

  



Development of a high sensitivity Ammonia sensor 

CEH report … version 1.0                                      2 

 

At the sensing electrode: 

2 NH3  N2 + 6 H+ + 6 e– 

The second half of the electrochemical reaction occurs at the “counter” electrode, 
where the hydrogen protons produced in the first half of the reaction react with oxygen 
to produce water. 

At the counter electrode: 

O2 + 4H+ + 4 e–  2H2O 

 

There are three main types of EC sensors:  

Potentiometric, measurement of voltage. This relies on a combination of electric and 
ionic current to flow in a closed circuit. 

Conductometric: measurement of either conductivity or resistivity. The capacitance of 
the sensor changes due to a selective sensing material such as polymers or other 
insulators. These absorbing materials serve as the dielectric layer of the capacitor and 
their permittivity changes with exposure to the analyte. These sensors are commonly 
used to detect humidity as well as carbon dioxide and volatile organic compounds. In 
humidity sensors, the dielectric layer comprises a water-sensitive polymer. 

Amperometric: measurement of current.  

In amperometric EC sensors, a constant voltage is applied and the sensor signal is a 
diffusion limited current. It usually consists of 3 electrodes, the working or sensing 
electrode, the counter electrode and also a reference electrode which are immersed in 
the electrolyte solution and a potentiostat for maintaining constant voltage (Baron and 
Saffell, 2017; Stetter and Li, 2008) (Figure 4).  

 

 

 

Figure 4: Design for standard amperometric gas sensors (Alphasense). Reproduced from 
Baron and Saffell, 2017 
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Table 3: Electrochemical (EC) NH3 sensors available on the market 

Product Detection 
range 

Application Website 

Alphasense Ammonia Sensor: NH3-A1 

 
 

0 – 50 ppm 
Sensitivity: 
0.017 to 
0.027 µA/ppm 
Resolution: < 
0.3 ppm  
 

Aquaculture gas 
detection,  

Flue gas analysis 

Environmental 
protection 
engineering.      

 

http://www.as-
sensor.com/prod
ucts/Alphasense-
Nh3-Gas-Sensor-
Ammonia-
Sensor-Nh3_A1-
(NH3_A1-).html 

Alphasense Ammonia Sensor: NH3-B1  

 

0-100ppm  
Sensitivity: 
0.025 to 
0.045 µA/ppm 
Resolution: < 
0.3 ppm 

http://www.as-
sensor.com/prod
ucts/Alphasense-
Nh3-Gas-Sensor-
Ammonia-
Sensor-Nh3_B1-
(NH3_B1-).html 

Industrial Scientific’s personal single-gas 
detector GasBadge® Pro, and ammonia 
(NH3) sensor  
 

 
  

0 – 500 ppm  
Sensitivity: no 
data 
 
Resolution: 1 
ppm 

Workplace 
monitoring 

http://www.indsci.
com/products/am
monia/  
 

GS+7NH3-100 Ammonia Gas Sensor 

 

0-100 ppm 
Sensitivity: 
0.115±0.045 
µA/ppm) 
 

Industrial 
application, in 
particular for 
fixed gas 
detectors. 

https://www.sens
orinstock.it/en/ele
ctrochemical/366-
gs7nh3-100.html 
 

 
GS+7NH3-1000 Ammonia Gas Sensor 

 

0-1000 ppm 
Sensitivity: 
8 ± 4 µA/ppm 
 

https://www.sens
orinstock.it/en/ele
ctrochemical/367-
gs7nh3-
1000.html 
 

 

  

http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_A1-(NH3_A1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_A1-(NH3_A1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_A1-(NH3_A1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_A1-(NH3_A1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_A1-(NH3_A1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_A1-(NH3_A1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_A1-(NH3_A1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_B1-(NH3_B1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_B1-(NH3_B1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_B1-(NH3_B1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_B1-(NH3_B1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_B1-(NH3_B1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_B1-(NH3_B1-).html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_B1-(NH3_B1-).html
http://www.indsci.com/products/ammonia/
http://www.indsci.com/products/ammonia/
http://www.indsci.com/products/ammonia/
https://www.sensorinstock.it/en/electrochemical/366-gs7nh3-100.html
https://www.sensorinstock.it/en/electrochemical/366-gs7nh3-100.html
https://www.sensorinstock.it/en/electrochemical/366-gs7nh3-100.html
https://www.sensorinstock.it/en/electrochemical/366-gs7nh3-100.html
https://www.sensorinstock.it/en/electrochemical/367-gs7nh3-1000.html
https://www.sensorinstock.it/en/electrochemical/367-gs7nh3-1000.html
https://www.sensorinstock.it/en/electrochemical/367-gs7nh3-1000.html
https://www.sensorinstock.it/en/electrochemical/367-gs7nh3-1000.html
https://www.sensorinstock.it/en/electrochemical/367-gs7nh3-1000.html
http://www.as-sensor.com/products/Alphasense-Nh3-Gas-Sensor-Ammonia-Sensor-Nh3_A1-(NH3_A1-).html
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Table 3: Electrochemical (EC) NH3 sensors available on the market. cont. 

Product Detection 
range 

Application Website 

ME3-NH3 Electrochemical Ammonia 
Sensor 
- Electrical current produced in 
electrochemical reaction of the NH3 gas 
are in direct proportion with its 
concentration following Faraday’s law 

 
 

0~100ppm 
NH3 
(sensitivity = 
0.10±0.05 
µA/ppm) 

Resolution: 
0.5ppm 

industrial and 
environmental 
protectionl fields 

https://www.wins
en-
sensor.com/prod
ucts/4-series-
electrochemical-
toxic-gas-
sensor/me3-nh3-
0-50ppm.html 
 

ME4-NH3 Ammonia Gas Sensor 
- Constant potential electrolysis type 

 

0~100ppm 
NH3 
(sensitivity = 
0.12±0.03 
µA/ppm) 
 

 https://www.wins
en-
sensor.com/prod
ucts/4-series-
electrochemical-
toxic-gas-
sensor/me3-nh3-
0-50ppm.html 
 

ZE03 Electrochemical Gas Sensor 
Module 

 

NH3: 0~100 
ppm 
C0: 0~1000 
ppm SO2: 
0~20 ppm 

Portable and 
fixed gas 
detector for toxic 
gas 

https://www.wins
en-
sensor.com/prod
ucts/gas-sensor-
module/industrial-
application-gas-
sensor-
module/ze03.html 
 

NH3 3E 100 SE-Gas Sensor Module 
- 3 electrode electrochemical sensor 
 

 
Transmitter board (converts raw sensor 
output into industry standard 4-20 mA 
output). 

 

NH3: 0-100 
ppm 
(sensitivity = 
0.13±0.03 
µA/ppm) 
 

 

 

  
https://www.sens
orinstock.it/en/ele
ctrochemical/643-
nh3-3e-100-
se.html 
 
https://www.sager
.com/nh3-3e-100-
se-5271106.html 
 

 

 

https://www.winsen-sensor.com/products/4-series-electrochemical-toxic-gas-sensor/me3-nh3-0-50ppm.html
https://www.winsen-sensor.com/products/4-series-electrochemical-toxic-gas-sensor/me3-nh3-0-50ppm.html
https://www.winsen-sensor.com/products/4-series-electrochemical-toxic-gas-sensor/me3-nh3-0-50ppm.html
https://www.winsen-sensor.com/products/4-series-electrochemical-toxic-gas-sensor/me3-nh3-0-50ppm.html
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https://www.winsen-sensor.com/products/4-series-electrochemical-toxic-gas-sensor/me3-nh3-0-50ppm.html
https://www.winsen-sensor.com/products/gas-sensor-module/industrial-application-gas-sensor-module/ze03.html
https://www.winsen-sensor.com/products/gas-sensor-module/industrial-application-gas-sensor-module/ze03.html
https://www.winsen-sensor.com/products/gas-sensor-module/industrial-application-gas-sensor-module/ze03.html
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https://www.sensorinstock.it/en/electrochemical/643-nh3-3e-100-se.html
https://www.sensorinstock.it/en/electrochemical/643-nh3-3e-100-se.html
https://www.sensorinstock.it/en/electrochemical/643-nh3-3e-100-se.html
https://www.sensorinstock.it/en/electrochemical/643-nh3-3e-100-se.html
https://www.sager.com/nh3-3e-100-se-5271106.html
https://www.sager.com/nh3-3e-100-se-5271106.html
https://www.sager.com/nh3-3e-100-se-5271106.html
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The EC sensor is filled with an organic gel electrolyte mixture in which the reaction 
occurs. The electrolyte includes an active ingredient that is consumed in the 
electrochemical reaction with ammonia. Active ingredients in the electrolyte are 
incrementally used up as the sensor is exposed to ammonia. Thus, the lifespan of the 
sensor is directly related to its exposure to NH3.  

EC sensors are typically low sensitivity (ppm range, see Table 3), with some operating 
at temperatures as low as – 40º C up to ~ 50º C. They are very to changes in 
temperature and often have internal temperature compensation. Higher temperatures 
typically shorten the life of the sensor. Humidity is also important; a high humidity 
environment can pass water vapour through the membrane and dilute the electrolyte 
solution, a low humidity environment accelerates water loss and shortens the sensor 
life. 

They also suffer from non-specificity. 

Cross-sensitivity: H2S, SO2, NO, NO2, Cl2, HCN (hydrogen cyanide). 

 

 Optical 

Optical sensors for detection of ammonia use optical absorption/emission scattering of 
ammonia gas at defined optical wavelengths. The instruments consists of a light 
emitting element, a photo-detecting element, a gas sensing element that responds to 
light and a filter for picking up fluorescence or phosphorescence. 

Optical adsorption spectroscopy is used in the most sensitive and selective ammona 
detectors for ambient ammonia, with response time of 1s reported. 

Sensitive optical instruments for automatic online monitoring of ammonia include: 

Picarro Cavity Ring-Down Spectroscopy (CRDS):  
https://www.picarro.com/technology/  

Quantum Cascade laser (QCL) instruments:  
(https://www.emerson.com/en-gb/). 

These instruments are not suitable as portable, low-cost sensors.  

 

 Infrared gas sensor 

Infrared gas sensors consists of an infrared source (incandescent light or a heated wire 
filament) and a detector which converts electromagnetic radiation energy into electrical 
signals.  

The principle is that the absorption of infrared (IR) light through an ammonia/air 
environment is different than for air only. The chemical bonds in NH3 absorb energy at 
specific wavelengths. When a chemical bond absorbs IR light, it continues to vibrate 
at the same frequency, but with greater amplitude after the transfer of energy. 

Several companies have developed IR sensors for sensing gas-phase ammonia 
concentration, e.g. IR-F6-NH3-0/2%-N/4 (http://www.rmtech.net/). 

https://www.picarro.com/technology/
https://www.emerson.com/en-gb/
http://www.rmtech.net/
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Detectors can measure either the reduction of electromagnetic radiation through the 
sample, or the temperature rise of the sample due to the absorption of the radiation. 
The most common infrared detector senses the temperature rise through the 
environmental sample. 

IR sensors are highly specific for ammonia, have long-term stability and reduced need 
for calibration adjustment. Limitations are the physical size of the detector assembly, 
the need to protect the detector against the potential effects of fluctuating temperature 
and humidity and substantially high costs.  

Infrared detectors are generally used for monitoring high concentrations of ammonia 
(> 500 ppm).  

 

 Semiconductor sensors 

Semiconductor sensors are also known as solid-state sensors or chemisorption (CS) 
sensors. The principle of operation is conductance change due to reversible gas 
adsorption (chemisorption) on the sensing layer.  

 
 Metal Oxide (MOS) Sensors 

Metal Oxide sensors (MOS) consist of one or several metal oxides such as tin oxide 
(SnO2), Molybdenum oxide (MoO3) or aluminium oxide (Al2O3) and a heating element. 
The metal oxide sensing elements are formed either in a spherical bead or in a thin 
film configuration, e.g. deposited on a silica chip similar to making semiconductors 
called chip-type sensors (Jekel and Reindl, 2002; Yi et al., 2015).  
 
In clean air, the electrical conductivity is low. Absorption of sample gas on the oxide 
surface followed by catalytic oxidation results in a change in electrical resistance of the 
oxide material. An electrical circuit converts the change in conductivity to an output 
signal that is related to the sample gas concentration being monitored. 
 
An internal heater at the base is used to heat the sensor up to a constant temperature 
of about 200 – 250oC to speed up reaction rate. Figure 5 shows the schematic of a 
semi-conductor sensor.  

In order to keep the low-power consumption of sensor while heating the sensing 
material to enhance its response and recovery, there has been development in micro-
hotplates that can be miniaturised and integrate these types of sensors on a chip 
(Timmer et al., 2005; Yan et al., 2017). 

Metals or additives that enhance the chemisorption of specific gases are used to make 
gas selective gas sensors, WO3 based sensing material is reported to respond to NH3 
ad NO. The lowest ammonia detection limit is 1ppm, using a WO3 ammonia sensor 
with Au and MoO3 additive. The sensor is operated at an elevated temperature of > 
400oC (Timmer et al., 2005).    
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Figure 5: Schematic of a semi-conductor sensor. 

 

The biggest advantage of the semi-conductor sensor is that it is not “consumed” during 
the sensing. When the gas is present, it is absorbed on the surface of the sensor. Once 
the ambient ammonia concentration decreases, the ammonia desorbs from the 
sensor’s surface. Semiconducting sensors can also be manufactured in film 
techniques in mass production making possible manufacture of low-cost sensors.  

The main disadvantage of semiconducting sensors is cross-sensitivity to oxygen, other 
gases and/or water. However, the use of filters can minimize the problem. These types 
of sensors are generally designed to respond to the widest possible range of toxic and 
flammable gases and vapours and are not specific to ammonia. 

 
Table 4: Semi-conductor MOS sensors. 

Product Detection 
range 

Application Website 

MQ137 
semiconductor 
sensor for 
ammonia  
(sensing 
material is 
SnO2) 
 
 
 

5～
500ppm 
NH3 
 

NH3 gas alarm,  
NH3 gas leakage alarm, 
Portable NH3 gas detector 
 

https://www.winsen-
sensor.com/products/semiconductor-
gas-sensor/mq137.html 
 

 

A Pt/NiO thin film-based resistor-type ammonia gas sensor with low detection limit of 
10 ppb NH3/air, and fast speeds, at an optimal operating temperature of 300◦C was 
recently reported by Chen et al. 2018). 

 

https://www.winsen-sensor.com/products/semiconductor-gas-sensor/mq137.html
https://www.winsen-sensor.com/products/semiconductor-gas-sensor/mq137.html
https://www.winsen-sensor.com/products/semiconductor-gas-sensor/mq137.html
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 Conducting Polymers (CP)  

Other types of semiconductor sensors are based on functional films of organic 
materials that make use of polymers (conducting polymers, CP). Different materials 
have been reported, such as polypyrrole (Li et al., 2016), polyaniline (Tanguy et al., 
2018), graphene derivatives (Tadi et al., 2016; Travlou et al., 2015) and cellulose (e.g. 
cellulose/TiO2/PANI composite nanofibers; Pang et al. 2016). CP-based sensors can 
be highly sensitive and specific for detection of target gas under ambient conditions. 

These semiconductor sensors are amenable to an array of detection mechanisms, 
such as electronic transducers (field effect transistor) and electrochemical 
(amperometric, conductometric, potentiometric and impedance). 

Their ease of synthesis also allow potential development of inexpensive 
chemiresistors. Fabrication of the sensing layer usually involves a solution-based thin 
film method such as spin coating and inkjet printing. 

In spin coating, thin films of polymers are deposited directly onto a substrate by in situ 
oxidative polymerization. The oxidant (precursor) is applied by spin coating, followed 
by exposure of the coated oxidant surface to monomer vapour, a process known as 
vapour-phase deposition polymerization (VDP) (Asatekin et al., 2010). This process 
has been adapated to produce high quality films of Polypyrrole (PPy) (Li et al., 2016; 
Patois et al., 2013) (and Polyaniline (PANI) (Tanguy et al., 2018).  

Since many appropriate oxidising agents such as ammonium peroxydisulpfate are 
water-soluble, solution-based deposition techniques are easily adapted to coat or 
pattern the substrate with the precursor layer. This makes the VDP technique 
compatible with printing technologies. 

 
Polymer thin-film capacitance sensor 

A polymer thin-film capacitance sensor is trademarked AMMONICAP® by Vaisala. It 
measures the change in capacitance of an ammonia sensitive polymer film between 
capacitor plates.  
 
There is however no information on the polymer film on Vaisala’s website.  
 

  
 
Figure 6: (Left) Vaisala’ s AMMONICAP® polymer thin film sensor, and (righ) AMT100 Series 
Ammonia Detectors. 
(https://www.vaisala.com/sites/default/files/documents/VN157_AMMONICAP%C2%AE_for_
Ammonia_Gas_Leak_Detection.pdf). 
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The theory of operation is that the capacitance of a capacitor is proportional to the 
permittivity of the capacitor material. Absorption of ammonia changes the relative 
permittivity and, hence, the capacitance value. Water molecules are also absorbed in 
the polymer. The effect of humidity is eliminated by a novel measurement technique 
based on a temperature-controlled measurement cycle. 

The ammonia concentration measurement is done as a cycle that includes both a 
heating (desorption) and cooling (absorption) period to determine and separate the 
effect of humidity from the response to ammonia concentration. The 
absorption/desorption cycle requires time (currently 18 seconds). The sensor averages 
multiple readings (currently 5) and gives a readout; therefore, the 
absorption/desorption cycle time limits the response time. The sensor continuously 
calculates and averages the readings. 
 

Polypyrrole CP: 

For polypyrrole (PPy) CP , the sensing mechanism is 2-fold. 

1. Irreversible reaction  between ammonia and the polymer 
2. Ammonia can reversibly reduce the oxidized form of polypyrrole. 
3. The reduction of polymer film causes a change in the conductivity of the 

material, making it suitable for resistometric or amperometric ammonia 
detection.  

Sensors have also described that detect ammonia using the change in frequency of a 
resonator, coated with the ammonia sensitive polymer.  

The irreversible reaction with NH3 however results in an increase in mass in the 
polymer film, with an exposure-dependent decrease in sensitivity of the sensor with 
time. Although regeneration mechanisms have been proposed, this is a major 
drawback with the PPy CP. 

 

Polyaniline CP: 

Polyaniline (PANi) is more stable.  It is deprotonated by ammonia which results in a 
change in conductance. A review of polyaniline ammonia sensors by Tanguy et al. 
(2018) describes progress in polyaniline modification techniques to achieve enhanced 
sensing performance. 

PANi-based gas sensors are commercially available for measuring ammonia levels in 
alarm systems, with detection limit of 1 ppm.  

High sensitivity of PANI to NH3 gas is well characterised (e.g. Liu et al., 2009; Tanguy 
et al., 2018), but a major drawback is slow desorption, so that recovery after exposure 
to NH3 may take significant time. 

A solution to the slow desorption in PANI-base sensors and baseline drift is to maintain 
sensing layer at higher temperatures to enhance recovery and reversibility. The 
increase in temperature affects kinetics of binding between NH3 and sensing layer and 
facilitates desorption of NH3 from PANI. 

A new generation of polyaniline-based chemiresistors on printed polymeric micro-
hotplates is emerging (Danesh et al. 2018). Danesh et al. (2018) describes a sensor 
with a polyaniline sensing layer doped with poly(4-styrenesulfonic acid), a fully inkjet-
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printed silver micro-hotplate heater and interdigitated electrodes on a polyethylene 
napthalate substrate, separated by a thin dielectric film. 

 

Graphene-based CPs 

Graphene-based polymers shows tremendous potential for development of highly 
sensitive and selective gas sensors (e.g. (Tadi et al., 2016; Travlou et al., 2015).  
Charge transfer kinetics between graphene and adsorbed molecules are tuned by 
doping and defects to confer specificity and sensitivity towards gas molecules.  

A fluorographene-based ultrasensitive ammonia sensor is reported by Tadi et al. 
(2016).  Selective binding of ammonia/ammonium with Fluorine (F) in fluorographene 
(FG) via electrostatic hydrogen bonding results in a change in the impedance.  Very 
low detection of down to 0.44 pM over a wide linear range of 1 pM to 0.1 µM was 
reported. 

 

 Surface Acoustic Wave (SAW) based sensor 

This works on principle of transduction whereby the sensor converts an input electrical 
signal into a mechanical wave and reconverts back into electrical signal (Bai & Sghi 
2007) (Figure 7). This is made possible by means of the interdigitated transducer 
known as IDTs which uses the piezoelectric effect. The IDTs are made of electrodes 
manufactured from aluminium, gold or platinum. 

A typical SAW consists of an input and output transducer with spacings between them 
called a delay-line. Gas sensing in SAW is realised by the application of a sensing 
material like a thin polymer across the delay line which selectively absorbs the gas of 
interest. Detection of different gases is made possible by using different configurations 
of SWA’s and at different frequencies, conferring high selectivity, high sensitivity and 
good response times. 

 

Figure 7: A SAW device to depict the principle of gas sensing 

 
Type of Saw Substrate 

Material 
Frequency Sensitivity Ref 

Two-port 
resonator 

Lithium tantalite 100 MHz NIL Hao 2010 

Two-port 
resonator 

ST-Cut Quartz 98.47 MHz 5.9 Hz/ppm Shen et al. 
2010 

Dual delay-line Lithium niobate 114.7 MHz 6.91 Hz/ppm Lin 2011 
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 Charged Carrier Injection (CI) sensors 

GfG Instrumentation has developed a sensor that operates on the principle called 
“charge carrier injection” and markets this technology as CI 21. The measurement 
technique uses a special gas sensitive material, which can selectively bind ammonia. 
By absorbing molecules, the ammonia carriers (Charge Carrier) are brought into the 
new sensor material (Injection). With special micro structured electrodes, the ammonia 
concentration can be determined. It is reported to have significantly reduced cross-
sensitivity compared to typical solid-state sensors and, since the sensor is not 
consumed, significantly increased sensor life compared to electrochemical sensors. 
 
Information are not available on the type of special gas sensitive material.  
 
 
Table 5: Charged carrier injection sensor.  

Product Detection range Website 

 
CI 21 sensor 
 

 
 

20 - 200 ppm 
30 - 1,000 ppm 
30 - 10,000 ppm 

 
http://goodforgas.com/wp-
content/uploads/2013/12/CI-
21_Data_Sheet.pdf 
 

http://goodforgas.com/wp-content/uploads/2013/12/CI-21_Data_Sheet.pdf
http://goodforgas.com/wp-content/uploads/2013/12/CI-21_Data_Sheet.pdf
http://goodforgas.com/wp-content/uploads/2013/12/CI-21_Data_Sheet.pdf
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 Phase 1: Scope, design and initial 
testing 

 Requirements for environmental monitoring 

Objective Concentration 
range 

Required 
response 
time 

Temperature 
range 

Application 

Monitoring 
ambient 
concentrations 
of NH3 

0.05 ppb to > 
10 ppb (Tang 
et al., 2018) 

Weekly to 
Monthly 

-10 to +40oC Ambient air monitoring in local, 
regional to national-scale networks. 

Ecosystem effects assessments, 
e.g. 
UNECE Critical Levels of NH3 
concentrations for protection of 
sensitive vegetation and 
ecosystems (Cape et al., 2009): 
1 µg m-3 annual mean for 
lichens/bryophytes.  
3 µg m-3 annual mean for higher 
vegetation. 

Compliance monitoring: e.g. 
Industrial Emissions Directive 
2010/75/EU (IED) 

Source or hot-
spot 
monitoring 

1 ppb > 100 
ppb (Loubet et 
al., 2008) 

Daily to 
monthly 

-10 to +40oC Environmental Impacts 
assessments, 

Data for validation of atmospheric 
transport models. 

Research. 

 

 

 Design of chemiresistor-type ammonia sensor 

The concept design of a prototype chemiresistor-type ammonia sensor combines 
passive diffusion sampling to control rate of NH3 gas diffusion into the sensor, with 
detection of resistivity changes from chemisorption of NH3 onto the sensing surface 
(acidified cellulose filters or conducting polymer such as fluorographene) (Figure 8). 
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Figure 8: Concept design of prototype chemiresistor-type sensor based on the CEH ALPHA 
sampler. 

 

Concept:  

 Passive diffusion of atmospheric NH3 gas through a gas-permeable 
hydrophobic membrane (5µm pore size PTFE membrane) to the sensing 
surface (an acidified filter or conducting polymer, CP).  

 Chemisorption of NH3 onto acid filters or CP results in a change in resistivity 
measured using, for example, a bridge circuit. 

 Establish relationship between resistivity changes (Ω-m) and amount of 
ammonia (NH3, µg) on the acid filters or CP. 

 Algorithm to convert the relationship derived above to air concentrations (µg 
NH3 m-3). The volume of air sampled over a prescribed period is estimated form 
the uptake rate of the CEH sampler. 

 Incorporate temperature and humidity sensor. 

 Program a raspberry Pi to log and process signals. 

 

 Theory of passive diffusion sampling 

Passive samplers operate on the principle of diffusion of gases from the atmosphere 
along a sampler of defined dimensions onto an absorbing medium, according to Fick’s 
law. The theoretical uptake rate of a sampler for ammonia (U, e.g. m3 h-1) is a function 
of the length, L (m), the cross sectional area, A (m2) of the stationary air layer within 
the sampler, and can the diffusion coefficient, D (m2 s-1) of ammonia gas (Equation 1). 
The diffusion path length is nominally the distance from the mouth of the sampler to 
the reaction surface at the other end of the tube (Tang et al., 2001).  
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U = DA/L    (1) 

Where D = 2.09 x 10-5 m2 s-1 at 10C for NH3 
 

The volume of air sampled (V, m3) for a given exposure period (t) sampling period 
(Equation 2): 

V (m3) = U (m3 h-1) x t (h)  (2) 

 

The air concentration of NH3 (, e.g. µg m-3): 

 = (me – mb) / V   (3) 

Where me = amount of a pollutant collected on an exposed sample (e.g. µg) 
 mb = amount of a pollutant in the blank sample  (e.g. µg) 
 

The CEH ALPHA sampler (Figure 9) (Tang et al., 2001) is a high sensitivity passive 
sampler developed by CEH that are used in the UK National Ammonia Monitoring 
Networks (Tang et al., 2018) and other air monitoring projects.  

Calibrated field uptake rate for ALPHA sampler @ 10oC = 0.003241315 m3 h-1 

 

Figure 9: Outline diagram of a single ALPHA Sampler. 

 

The ALPHA sampler provides a controlled, known uptake of NH3 and confers the 
following selectivity in the sampling of NH3: 

1. Low molecular mass gas molecules such as NH3 only can diffuse through the 
5µm pore size PTFE membrane at the air inlet. Aerosols will not. Other gases 
that will diffuse through the membrane include: NO, NO2, SO2, amines.   

2. Reaction and retention of NH3 (alkaline gas) on the acid impregnated filter 
behind the membrane. Acid gases such as NO, NO2 and SO2 should not be 
retained. However, it is proposed to run tests to ascertain this: 

i) extract and analyse acid impregnated paper after exposure for 
presence of other inorganic ions (NO2

-, NO3
-, SO4

2-, Cl-). 
ii) add a second base-coated filter behind the acid filter to retain 

other ions that may interfere.    
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To increase sensitivity, the diffusion path length (i.e. the distance from the membrane 
to the reaction surface, 6 mm in ALPHA sampler) and the reaction surface area (3.46 
x 10-4 m2 in ALPHA sampler) can be modified to achieve a higher uptake rate.  

 

 Measuring resistivity 

When a voltage is applied to a material or device, current will flow through it. How much 
current will flow is based on the resistance that the material applies to a circuit. 
Resistance (R) is the capacity of a circuit or material to oppose the flow of an electrical 
current, measured in Ohms (Ω) and is the quotient of the DC voltage U applied to a 
circuit, divided by the resulting current (I) though the circuit (Equation 4). Resistivity is 
the measurement of a device’s resistance, measured in Ω-m or Ω-square . 

𝑅 =
𝑈

𝐼
   (4) 

 

Resistance is affected by a number of factors including, surface cleanliness, humidity, 
temperature, applied voltage or applied current. Accuracy and sensitivity of resisitivity 
measurements is therefore dependent on the test conditions, sample rate, and meter 
resolution. 

 

 Surface Resistivity 

This measures resistance across the surface of a material in contact with the 
electrodes (Figure 10). 

 

 

Figure 10: Basic setup for surface resistivity measurement. 

 

Surface Resistivity (𝜌𝑠) measurement units are given as Ohms per metre (Ω-m) or 

square Ohms per Square (Ω/square) regardless of the size of the electrode.   

It is determined by the ratio pf DC voltage U drop per unit length L to the surface current 
Is per unit width D (Equation 5). 

𝜌𝑠 =
𝑈/𝐿

𝐼𝑠/𝐷
  (5) 
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A surface-resistivity measurement of very conductive flat material of a uniform 
substance is also the resistance measurement of the volume between the electrodes, 
because the path of the electrode includes the depth or thickness of the test specimen. 

 

To measure the surface resistivity of a flat material, a set of equal-sized electrodes is 
placed in good contact with the surface of the material, separated by a space equal to 
the width of the electrode. Because one divided by one equals one, the length divided 
by the width of the area cancels out the effect of the size of the measured area. 

 

A typical Ohmmeter or Multimeter applies low current though a material, measures the 
voltage and displays the resistance in Ohms (Ω). High Resistivity measurements are 
typically obtained using either a megohmmeter or an IR (insulation resistance) meter. 

 

 Bulk resistivity (or volume resistivity) 

This is the measurement of resistance(R) multiplied by the cross-section of a specimen 
(Width, W x Thickness, T) divided by the Length (L) of the material between the 
electrodes (Equation 6). The electrodes are in contact with both sides of the material 
at each end. 

R (W x T)/L = Ω-cm   (6) 

 
 

 Controlled temperature and humidity test 
chamber 

A modification of the Portable Relative Humidity and Aerosol Generator System (PReHAGS) (Mullinger 2016) is 
used to generate different humidity conditions in a test chamber at ambient laboratory temperatures ( 

Figure 11,  

Figure 12).  

Humid air flow and dry air flow are separately controlled by two Mass Flow Controllers 
(MFCs) in the system and mixed together to create a total blended flow of air that flows 
through the test chamber at a specified humidity.  

A custom labview program allows the users to set the flow rates of the two MFCs and 
to monitor the temperature and relative humidity inside the test chamber (Figure 13).  
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Figure 11: Schematic of equipment for generating different humidity conditions in a controlled 
humidity test chamber. Mass Flow Controller (MFC)/Valve 1: dry air flow, Mass Flow Controller 
(MFC)/Valve 2: humid air flow, MFM: Mass Flow Meter, DIW: Deionised Water. Adapted from 
Mullinger et al., 2016) 

 

 

 

 

Figure 12: Picture of equipment for generating different humidity conditions in a controlled 
humidity chamber.  
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Figure 13: Labview program: humidity is monitored and controlled by adjusting air flow through 
Mass Flow Controller (MFC)/Valve 1: dry air flow and Mass Flow Controller (MFC)/Valve 2: 
humid air flow. 

 Initial tests 

Objectives are: 

 Design a circuit to measure resistivity changes on sensing surface (acidified 
paper or conducting polymer). 

 Establish relationship between resistivity changes (Ω-m) and amount of 
ammonium (NH4

+
, µg) on the acid filters or CP under different relative humidities 

(50 – 90 %). 

 Sensing material: Cellulose filters 

a) 24 mm diameter Swiflab cellulose filter circles (type used in CEH ALPHA 
samplers). 

b) Acid-impregnated filter: 24 mm filter impregnated with 6 µg citric acid (50 µl of 
12 % citric acid solution – ALPHA protocol). 

c) NH3 doped acid-impregnated filter: Acid-impregnated filter + 0.3 µg NH4
+ (50 

µl of 6 ppm NH4
+ solution made from (NH4)2SO4)).  

 

0.3 µg NH4
+ on the acid filter is equivalent to exposure to: 

 ~ 5 mg NH3 m-3 / ~ 7 ppm NH3 for 1 minute  

 ~ 4 µg NH3 m-3 NH3 / ~ 5 ppb NH3 for 1 day 
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The amount of NH3 collected on an acidified filter after exposure periods of i) 1 minute 
( 

Table 6) and ii) 1 day (Table 7) for a range of atmospheric NH3 concentrations may be 
estimated according to Equation 6: 

NH3 (µg) =  (µg NH3 m-3) x [U (m3 h-1) x t (h)] (6) 

Where: U = 0.003241315 m3 h-1   @10oC (see section 4.3) 

 

Table 6: Estimated amount of NH3 collected on acidified filter of ALPHA sampler for a 
sampling duration of 1 minute (volume of air sampled = 0.00005 m3). 

Atmospheric concentrations Sampled by ALPHA  

[NH3] ppb [NH3] µg m-3 [NH3] µg on ALPHA filter 

0.1 0.07 0.000004 

1 0.74 0.000040 

2 1.48 0.000080 

5 3.70 0.000200 

10 7.40 0.000400 

25 18.5 0.000999 

50 37.0 0.001999 

100 74.0 0.003998 

250 185.0 0.009994 

500 370.0 0.019988 

1000 740.0 0.039976 

10000 7400.0 0.399762 

 

Table 7: Estimated amount of NH3 collected on acidified filter of ALPHA sampler for a 
sampling duration of 1 day (volume of air sampled = 0.0778 m3). 

Atmospheric concentrations Sampled by ALPHA  

[NH3] ppb [NH3] µg m-3 [NH3] µg on ALPHA filter 

0.1 0.07 0.0058 

1 0.74 0.0576 

2 1.48 0.115 

5 3.70 0.288 

10 7.40 0.576 

25 18.5 1.44 

50 37.0 2.88 

100 74.0 5.76 

250 185.0 14.4 

500 370.0 28.8 

1000 740.0 57.6 

10000 7400.0 575.7 
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 Sensing material: Fluorographene 

Contact was made with the authors of the Fluorographene research paper (Tadi et al. 
2016) in India.  

Web.: http://www.tifrh.res.in/~tnn/ 

Dr. Narayanan of the Tata Institute of Fundamental Research in Hyderabad kindly 
agreed to grow FG film on a range of membranes sent to their lab. 

Due to stability issue at 400oC of the membranes supplied, the research team in India 
had to modify their normal procedures.  

 Zefluor PTFE = OK. Successful 

 PTFE membrane type 1 = unsuccessful (polypropylene support of PTFE 
melted at 400oC)  

 PTFE membrane type 2 = unsuccessful (polypropylene support of PTFE 
melted at 400oC)  

 Nylon membrane = unsuccessful. Melting point of Nylon = 200oC. 

 They additionally provided samples of Fluorographene on GFC filters (47 mm 
circles cut into quarters). 

 

Membranes used in resistivity tests: 

a) 25 mm Zefluor PTFE membrane 

b) Fluorographene thin film (FG) on Zefluor (substrate)  

c) NH3 doped FG on Zefluor (FG surface doped with 0.3 µg NH4
+ (50 µl of 6 ppm 

NH4
+ solution made from (NH4)2SO4)).  

 

0.3 µg NH4
+ on the acid filter is equivalent to exposure to: 

 ~ 5 mg NH3 m-3 / ~ 7 ppm NH3 for 1 minute  

 ~ 4 µg NH3 m-3 NH3 / ~ 5 ppb NH3 for 1 day 

  

http://www.tifrh.res.in/~tnn/
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 Resistivity measurement - Test 1 

Electrodes were made from wire soldered onto strips of PCB boards (insulator). Filters 
under test were sandwiched and clamped between two pairs of the electrodes (Figure 
14).  

 

     

Figure 14: A pair of strip electrodes makes a bulk-resistivity measurement on the filter crossing 
between them. 

 

A Megger MFT1730 multimeter (Figure 15) was used to measure resistivity, with 
crocodile clips making contacts with wires from the electrodes. A voltage of 100 VDC 
was applied to the filter, with resistivity recorded in MOhms (MΩ).  

Note that this was an existing instrument available at CEH Edinburgh capable of 
measuring the range of high resistances encountered.  

 

 

Figure 15:Megger MFT1730 multimeter used to measure resistivity. 
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Test results 

Very high (MOhm) resistance is seen in the filters (Table 8; Table 9). This was poorly 
controlled in the tests (e.g. inconsistent electrode spacing), but the order of magnitude 
was consistent.  

In summary there does seem to be a difference in response between untreated papers, 
acid coated papers and doped acid coated papers (Table 8; Table 9).  

 

Table 8: Bulk resistivity measurements of cellulose filters. All readings were carried out at 
100 VDC.  

 24mm filter Citric acid coated 
filter 

Citric acid coated 
filter + 0.3 µg 
NH4

+   

Temperature and 
Humidity 

Measurement 1 

(MΩ) 
>999 740 960 240C, 60 % RH 

Measurement 2 

(MΩ) 
>999 >999 >999 240C, 60 % RH 

Measurement 3 

(MΩ) 
>999 740 935 240C, 60 % RH 

 

 

Table 9: Further tests on humidity-dependent resistivity measurement. All readings were 
carried out at 100 VDC. 

 24mm filter Citric acid coated 
filter 

Citric acid coated 
filter + 0.3 µg 
NH4

+   

Resistivity 
Measurement 
(MΩ) 

>999 to 200 
@ 
240C  
70 - 80 % RH 
 

>999 to 200 
@ 
240C  
50 - 70 % RH 
 

>999 to 200 
@ 
240C  
60 - 70 % RH 
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 Resistivity measurement - Test 2 

Further tests were conducted: 

 More detailed and controlled conditions: slowly adjusting humidity and 
allowing sufficient equilibration times.  

 Improved design of electrodes with fixed spacings (Figure 16). 

  
Figure 16: Experimental set-up for resistivity measurements inside test chamber. The test chamber is 
shown with the cover removed. The electrodes are spaced with 2 tracks width between them. 

 
24 mm cellulose filters 

A difference in resistivity response was observed between blank and doped acid filters, 
with lower resistance readings on the doped acid filter than the blank over the humidity 
range tested (Figure 17). 

The results show that resistance measurements are very sensitive to changes in 
humidity. Further tests are warranted: 

 Repeat resistance measurements comparing blank vs doped (0.3 µg NH4
+) at 

different humidity conditions (20 – 90%) to confirm differences. 

 Acid filters doped with different amounts of NH4
+ (using solutions prepared from 

NH4OH, not (NH4)2SO4, to eliminate contribution to resistance from the SO4
- 

ions). 
 

  
Figure 17: Surface resistivity measurements on 24 mm diameter cellulose filter circles. All readings were 
carried out at 100 VDC. Acid paper = filter coated with 6 µg citric acid. Doped Acid Filter = acid paper 
doped with 3 µg NH4

+. Difference = [Blank – Doped] estimated from the derived exponential relationships 
for the blank and doped filters, respectively. 
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Fluorographene  

Zefluor membrane: Zefluor is pure PTFE. At RH < 72%, resistance is > 999 MΩ. 
Resistance decreased exponentially with humidity in the range 72 – 84 % tested 
(Figure 18).  

FG on Zefluor membrane: FG is a semi-conductor material. Initial resistivity 
measurements on FG shows that the FG is less sensitive to humidity than Zefluor, with 
resistance changing from > 999 MΩ at RH > 79% and decreasing exponentially with 
increasing humidity (Figure 18). Similar resistivity readings for both Zefluor and FG on 
Zefluor occur at around 83% RH.  

The same test conducted on other FG-Zefluor membranes however showed no 
change in resistivity with humidity, with resistance remaining above maximum (> 999 
MΩ) over the 20 – 90 % humidity range tested. 

The differences in response may be attributed to variations in the quality of the FG thin 
film (black FG particles) coating on the Zefluor membrane. Visually, some have a more 
homogeneous black film than others, and some of the Zefluor PTFE membrane are 
distorted / misshapen (due to high temperatures of around 400oC in synthesis/coating 
process).  

 

 

Figure 18: Surface resistivity measurements on Zefluor and Fluorographene (FG) on Zefluor. 
All readings were carried out at 100 VDC. 

 

Doped FG on Zefluor membrane: initial results are inconclusive, with resistivity values 
remaining above maximum (> 999 MΩ) over the 20 – 90 % humidity range tested. 
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 Proposed further tests  

 Improved resistivity measurements  

Requirements: 

 Resistivity measurements at low voltage (e.g. around 12 V). 

 Electrodes/circuits with accurate, sensitive and reproducible measurements. 

 A multimeter with low voltage settings that can measure high resistance values 
and with an PC option to log data continuously. 

With recent development in Microelectronics Systems (MEMS), micro-electrodes with 
very small electrode surface area have been developed in the fabrication of 
electrochemical sensors.  

This makes integration of micro-electrodes with Fluorographene onto a Chip in 
fabrication of a chemiresistor sensor possible. 

The types of micro-electrodes available on the market are screen-printed electrodes 
(SPE) and Interdigitated Electrodes. 

   

Screen Printed Electrodes (SPE) 

Fluorographene coated/modified Screen Printed Electrodes (purchased from Taiwan) 
are used by TATA in India for their research work on FG. 

 

Figure 4: The structure of a commercial screen printed electrode. 

Manufacturers from the internet: 

 https://www.gamry.com/cells-and-accessories/electrodes/screen-printed-
electrodes/ 

 http://www.dropsens.com/en/screen_printed_electrodes_pag.html#membrane  

 

 

Interdigitated Electrodes/ Microelectrodes 

Manufacturers from the internet: 

 http://www.dropsens.com/en/interdigitated_electrodes.html 

 http://www.ntelectrodes.com/  

https://www.gamry.com/cells-and-accessories/electrodes/screen-printed-electrodes/
https://www.gamry.com/cells-and-accessories/electrodes/screen-printed-electrodes/
http://www.dropsens.com/en/screen_printed_electrodes_pag.html#membrane
http://www.dropsens.com/en/interdigitated_electrodes.html
http://www.ntelectrodes.com/
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 Temperature and humidity compensation 

Resistivity measurements is influenced by changes in temperature and humidity. 

 Stability of sensor at wide temperature and humidity range desirable. 

 Monitor temperature and humidity sensors by inclusion of a sensor, e.g. ZS03 
Temperature and Humidity Sensor Module. 

 
https://www.winsen-sensor.com/products/micromolecule-humidity-sensor/zs03.html  

 Develop algorithm for temperature/humidity compensation, or: 

 Measure ammonia on a cycle that includes both a heating (desorption) and 
cooling (absorption) period to determine and separate the effect of humidity 
from the response to ammonia concentration.  
 

 Modify sensor dimensions to increase sensitivity 

To increase sensitivity, the diffusion path length (i.e. the distance from the membrane 
to the reaction surface, 6 mm in ALPHA sampler) and the reaction surface area (3.46 
x 10-4 m2 in ALPHA sampler) may be modified to achieve a higher uptake rate.  

 

 Data logging 

To start with, program a raspberry Pi to log data. 

 Need an electrical circuit / algorithm to convert the change in resistivity to an 
output signal that is related to the sample gas concentration being monitored. 

 Develop algorithms to convert resistivity outputs to air concentrations (µg NH3 
m-3). 

 Low time-resolution measurement is adequate for environmental air monitoring 
(section 4.1). The sensor can be programmed to log data once every hour or 
once every 24 hours and average the readings to the required time resolution 
(daily, weekly or monthly). 

 

 

 

 

 

https://www.winsen-sensor.com/products/micromolecule-humidity-sensor/zs03.html
http://www.winsen-sensor.com/products/micromolecule-humidity-sensor/zs03.html


Development of a high sensitivity Ammonia sensor 

CEH report … version 1.0                                      27 

 

 References 

Asatekin, A., Barr, M.C., Baxamusa, S.H., Lau, K.K.S., Tenhaeff, W., Xu, J., and 
Gleason, K.K. (2010). Designing polymer surfaces via vapor deposition. Materials 
Today 13, 26–33. 

Baron, R., and Saffell, J. (2017). Amperometric gas sensors as a low cost emerging 
technology platform for air quality monitoring applications: A review. ACS Sens. 2, 
1553–1566. 

Cape, J.N., van der Eerden, L.J., Sheppard, L.J., Leith, I.D., and Sutton, M.A. (2009). 
Evidence for changing the critical level for ammonia. Environ. Pollut. 157, 1033–1037. 

Chen, H.-I., Hsiao, C.-Y., Chen, W.-C., Chang, C.-H., Chou, T.-C., Liu, I.-P., Lin, K.-
W., and Liu, W.-C. (2018). Characteristics of a Pt/NiO thin film-based ammonia gas 
sensor. Sensors and Actuators B: Chemical 256, 962–967. 

Jekel, T.D., and Reindl, D.T. (2002). Ammonia Sensor Overview (Madison, USA: 
Industrial Refrigeration Consortium (IRC)). 

Li, Y., Ban, H., and Yang, M. (2016). Highly sensitive NH3 gas sensors based on novel 
polypyrrole-coated SnO2 nanosheet nanocomposites. Sensors and Actuators B: 
Chemical 224, 449–457. 

Loubet B, Willem J, Asman A.H, Theobald M, Hertel O, Tang Y.S, Daemmgen U, 
Cellier P. & Sutton M.A. (2008) Ammonia deposition near hot spots: processes, models 
and monitoring methods. In: Sutton M.A., Baker S.M.H., Reis S.: Atmospheric 
Ammonia - Detecting emission changes and environmental impacts. CLRTAP / 
COST729 Workshop on Ammonia in Edinburgh (4-6 December 2006). Springer 
Publishers. 

Mullinger N. (2016) Portable Relative Humidity and Aerosol Generator System 
(PReHAGS): Operation and Technical Manual. CEH internal document. Dated January 
2016.  

Pang, Z., Yang, Z., Chen, Y., Zhang, J., Wang, Q., Huang, F. and Wei, Q. (2016). A 
room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite 
nanofibers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 494, 
248-255, https://doi.org/10.1016/j.colsurfa.2016.01.024. 

Patois, T., Sanchez, J.-B., Berger, F., Fievet, P., Segut, O., Moutarlier, V., Bouvet, M., 
and Lakard, B. (2013). Elaboration of ammonia gas sensors based on electrodeposited 
polypyrrole--cobalt phthalocyanine hybrid films. Talanta 117, 45–54. 

Stetter, J.R., and Li, J. (2008). Amperometric gas sensors--a review. Chem. Rev. 108, 
352–366. 

Tadi, K.K., Pal, S., and Narayanan, T.N. (2016). Fluorographene based Ultrasensitive 
Ammonia Sensor. Sci. Rep. 6, 25221. 

Tang, Y.S., Cape, J.N., and Sutton, M.A. (2001). Development and types of passive 
samplers for monitoring atmospheric NO2 and NH3 concentrations. 
ScientificWorldJournal 1, 513–529. 



Development of a high sensitivity Ammonia sensor 

CEH report … version 1.0                                      28 

 

Tanguy, N.R., Thompson, M., and Yan, N. (2018). A review on advances in application 
of polyaniline for ammonia detection. Sensors and Actuators B: Chemical 257, 1044–
1064. 

Timmer, B., Olthuis, W., and Berg, A. van den (2005). Ammonia sensors and their 
applications—a review. Sensors and Actuators B: Chemical 107, 666–677. 

Travlou, N.A., Singh, K., Rodríguez-Castellón, E., and Bandosz, T.J. (2015). Cu–BTC 
MOF–graphene-based hybrid materials as low concentration ammonia sensors. J. 
Mater. Chem. A 3, 11417–11429. 

Yan, W., Harley-Trochimczyk, A., Long, H., Chan, L., Pham, T., Hu, M., Qin, Y., Zettl, 
A., Carraro, C., Worsley, M.A., et al. (2017). Conductometric gas sensing behavior of 
WS 2 aerogel. FlatChem 5, 1–8. 

Yi, W., Lo, K., Mak, T., Leung, K., Leung, Y., and Meng, M. (2015). A Survey of 
Wireless Sensor Network Based Air Pollution Monitoring Systems. Sensors 15, 29859. 

Yunusa, Z., Hamidon, M.N., Kaiser, A., and Awang, Z. (2014). Gas Sensors: A Review. 
Sensors & Transducers 168, 61–75. 

 



Development of a high sensitivity Ammonia sensor 

CEH report … version 1.0                                      29 

 

 
 


