344 research outputs found

    Nuclear dependence of azimuthal asymmetry in semi-inclusive deep inelastic scattering

    Full text link
    Within the framework of a generalized factorization, semi-inclusive deeply inelastic scattering (SIDIS) cross sections can be expressed as a series of products of collinear hard parts and transverse-momentum-dependent (TMD) parton distributions and correlations. The azimuthal asymmetry ofunpolarizedSIDISinthesmalltransversemomentumregionwilldependonbothtwistβˆ’2and3TMDquarkdistributionsintargetnucleonsornuclei.Nuclearbroadeningofthesetwistβˆ’2and3quarkdistributionsduetofinalβˆ’statemultiplescatteringinnucleiisinvestigatedandthenucleardependenceoftheazimuthalasymmetry of unpolarized SIDIS in the small transverse momentum region will depend on both twist-2 and 3 TMD quark distributions in target nucleons or nuclei. Nuclear broadening of these twist-2 and 3 quark distributions due to final-state multiple scattering in nuclei is investigated and the nuclear dependence of the azimuthal asymmetry $ is studied. It is shown that the azimuthal asymmetry is suppressed by multiple parton scattering and the transverse momentum dependence of the suppression depends on the relative shape of the twist-2 and 3 quark distributions in the nucleon. A Gaussian ansatz for TMD twist-2 and 3 quark distributions in nucleon is used to demonstrate the nuclear dependence of the azimuthal asymmetry and to estimate the smearing effect due to fragmentation.Comment: 9 pages in RevTex with 2 figure

    Overviews of Investigation on Submersible Pressure Hulls

    Get PDF
    With the exploration of natural resources and the research on oceanography in the deep sea obtained more and more attention, in the recent years, the pressure hull of the submersibles has been widely studied and used in many states. In order to the continuing design and assessment on it effectively, the paper summarizes the design method, the structural feature and the material selection of this object

    Twist-4 contributions to the azimuthal asymmetry in SIDIS

    Full text link
    We calculate the differential cross section for the unpolarized semi-inclusive deeply inelastic scattering (SIDIS) process eβˆ’+Nβ†’eβˆ’+q+Xe^-+N \to e^-+q+X in leading order (LO) of perturbative QCD and up to twist-4 in power corrections and study in particular the azimuthal asymmetry . The final results are expressed in terms of transverse momentum dependent (TMD) parton matrix elements of the target nucleon up to twist-4. %Under the maximal two-gluon correlation approximation, these TMD parton matrix elements in a nucleus %can be expressed terms of a Gaussian convolution of that in a nucleon with the width given by the jet transport %parameter inside cold nuclei. We also apply it to $e^-+A \to e^-+q+X$ and illustrate numerically the nuclear dependence of the azimuthal asymmetry by using a Gaussian ansatz for the TMD parton matrix elements.Comment: 9 pages, afigur

    Spin transfer and polarization of antihyperons in lepton induced reactions

    Full text link
    We study the polarization of antihyperon in lepton induced reactions such as e+eβˆ’β†’HΛ‰+Xe^+e^-\to\bar H+X and l+pβ†’lβ€²+HΛ‰+Xl+p\to l'+\bar H+X with polarized beams using different models for spin transfer in high energy fragmentation processes. We compare the results with the available data and those for hyperons. We make predictions for future experiments.Comment: 31 pages, 6 figures. submitted to Phys. Rev. D. content changed, references adde

    Global quark polarization in non-central A+AA+A collisions

    Get PDF
    Partons produced in the early stage of non-central heavy-ion collisions can develop a longitudinal fluid shear because of unequal local number densities of participant target and projectile nucleons. Under such fluid shear, local parton pairs with non-vanishing impact parameter have finite local relative orbital angular momentum along the direction opposite to the reaction plane. Such finite relative orbital angular momentum among locally interacting quark pairs can lead to global quark polarization along the same direction due to spin-orbital coupling. Local longitudinal fluid shear is estimated within both Landau fireball and Bjorken scaling model of initial parton production. Quark polarization through quark-quark scatterings with the exchange of a thermal gluon is calculated beyond small-angle scattering approximation in a quark-gluon plasma. The polarization is shown to have a non-monotonic dependence on the local relative orbital angular momentum dictated by the interplay between electric and magnetic interaction. It peaks at a value of relative orbital angular momentum which scales with the magnetic mass of the exchanged gluons. With the estimated small longitudinal fluid shear in semi-peripheral Au+AuAu+Au collisions at the RHIC energy, the final quark polarization is found to be small ∣Pq∣<0.04|P_q|<0.04 in the weak coupling limit. Possible behavior of the quark polarization in the strong coupling limit and implications on the experimental detection of such global quark polarization at RHIC and LHC are also discussed.Comment: 28 pages,11 figure

    Disentangling covariant Wigner functions for chiral fermions

    Full text link
    We develop a general formalism for the quantum kinetics of chiral fermions in a background electromagnetic field based on a semiclassical expansion of covariant Wigner functions in the Planck constant ℏ\hbar. We demonstrate to any order of ℏ\hbar that only the time-component of the Wigner function is independent while other components are explicit derivative. We further demonstrate to any order of ℏ\hbar that a system of quantum kinetic equations for multiple-components of Wigner functions can be reduced to one chiral kinetic equation involving only the single-component distribution function. These are remarkable properties of the quantum kinetics of chiral fermions and will significantly simplify the description and simulation of chiral effects in heavy ion collisions and Dirac/Weyl semimetals. We present the unintegrated chiral kinetic equations in four-momenta up to O(ℏ2)O(\hbar ^2) and the integrated ones in three-momenta up to O(ℏ)O(\hbar). We find that some singular terms emerge in the integration over the time component of the four-momentum, which result in a new source term contributing to the chiral anomaly, in contrast to the well-known scenario of the Berry phase term. Finally we rewrite our results in any Lorentz frame with a reference four-velocity and show how the non-trivial transformation of the distribution function in different frames emerges in a natural way.Comment: RevTex 4, 14 pages, no figure. Section II and III have been re-organized and expended to three sections (II-IV) to include more details of calculations. Section V has been expanded to include more discussions. A new section (VI) is added about Wigner functions in a general Lorentz frame. Some references are adde
    • …
    corecore