15 research outputs found

    Unconditional Perseveration of the Short-Term Mental Set in Chunk Decomposition

    Get PDF
    A mental set generally refers to the brain’s tendency to stick with the most familiar solution to a problem and stubbornly ignore alternatives. This tendency is likely driven by previous knowledge (the long-term mental set) or is a temporary by-product of procedural learning (the short-term mental set). A similar problem situation is considered the factor required for perseveration of the long-term mental set, which may not be essential for the short-term mental set. To reveal the boundary conditions for perseveration of the short-term mental set, this study adopted a Chinese character decomposition task. Participants were asked to perform a practice problem that could be solved by a familiar loose chunk decomposition (loose solution) followed by a test problem, or they were asked to repeatedly perform 5–8practice problems followed by a test problem; the former is the base-set condition, and the latter is the enhanced-set condition. In Experiment 1, the test problem situation appeared to be similar to the practice problem and could be solved using the reinforced loose solution and also an unfamiliar tight chunk decomposition (tight solution) (a 2-solution problem). In Experiment 2, the test problem situation differed from the practice problem and could only be solved using an unfamiliar tight solution (a 1-solution problem). The results showed that, when comparing the enhanced-set and base-set conditions, both the accuracy rate and the response times for solving the test problem with a tight solution were worse in Experiment 1, whereas the response times were worse in Experiment 2. We concluded that perseveration of the short-term mental set was independent of the similarity between problem situations and discuss the differences in perseveration between two types of fixation

    The Asian Arowana (Scleropages formosus) Genome Provides New Insights into the Evolution of an Early Lineage of Teleosts

    Get PDF
    The Asian arowana (Scleropages formosus), one of the world’s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas

    The Asian arowana (<i>Scleropages formosus</i>) genome provides new insights into the evolution of an early lineage of teleosts

    Get PDF
    The Asian arowana (Scleropages formosus), one of the world’s most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas

    Comparative Transcriptomic Study of Muscle Provides New Insights into the Growth Superiority of a Novel Grouper Hybrid

    No full text
    <div><p>Grouper (<i>Epinephelus spp</i>.) is a group of fish species with great economic importance in Asian countries. A novel hybrid grouper, generated by us and called the Hulong grouper (Hyb), has better growth performance than its parents, <i>E</i>. <i>fuscoguttatus</i> (Efu, ♀) and <i>E</i>. <i>lanceolatus</i> (Ela, ♂). We previously reported that the GH/IGF (growth hormone/insulin-like growth factor) system in the brain and liver contributed to the superior growth of the Hyb. In this study, using transcriptome sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR), we analyzed RNA expression levels of comprehensive genes in the muscle of the hybrid and its parents. Our data showed that genes involved in glycolysis and calcium signaling in addition to troponins are up-regulated in the Hyb. The results suggested that the activity of the upstream GH/IGF system in the brain and liver, along with the up-regulated glycolytic genes as well as ryanodine receptors (RyRs) and troponins related to the calcium signaling pathway in muscle, led to enhanced growth in the hybrid grouper. Muscle contraction inducing growth could be the major contributor to the growth superiority in our novel hybrid grouper, which may be a common mechanism for hybrid superiority in fishes.</p></div

    qRT-PCR validation of candidate genes.

    No full text
    <p>Nine glycolytic genes (A), RyR and Tn (B) were picked out as representatives of differences between the Hyb and its parents. β-actin was used as the internal control, and each value represents an average of three separate biological replicates. The error bars represent the standard deviation. Asterisk (*) was marked if there was significant difference between the two samples, as assessed by a t-test (<i>P</i> < 0.05).</p

    The GH/IGF axis may serve as the upstream pathway of glycolysis to stimulate enhanced growth.

    No full text
    <p>Blue arrows denote the expression differences between the Hyb and paternal Ela. Red arrows denote the expression differences between the Hyb and maternal Efu. Up and down arrows represent for up- and down-regulation of transcription, respectively, in the Hyb.</p
    corecore