17 research outputs found

    Dielectric properties of salmon (Oncorhynchus keta) and sturgeon (Acipenser transmontanus) caviar at radio frequency (RF) and microwave (MW) pasteurization frequencies

    Get PDF
    Abstract Radio frequency (RF) and microwave (MW) heating provide an important advantage of more rapid heat penetration in pasteurization processes for heat labile high value foods, which to date, have only been pasteurized by conductive heating. The objectives of this work were to determine the dielectric constant, loss factor and power penetration depth for salmon (0.8% and 2.3% total salt) and sturgeon (0.20 and 3.3% salt) caviars at RF frequency of 27 MHz and MW frequency of 915 MHz (20-80°C). The dielectric constant (e 0 ) and dielectric loss factor (e 00 ) for salmon and sturgeon caviar increased markedly with increasing temperature at 27 MHz but not at 915 MHz. Power penetration depth was higher at 27 MHz compared to 915 MHz, and in unsalted compared to salted roe. Power penetration depth tended to decrease as temperature increased

    Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide

    Get PDF
    BACKGROUND: Accumulation of β-amyloid peptides is an important hallmark of Alzheimer\u27s disease (AD). Tremendous efforts have been directed to elucidate the mechanisms of β-amyloid peptides degradation and develop strategies to remove β-amyloid accumulation. In this study, we demonstrated that a subpopulation of oligodendroglial precursor cells, also called NG2 cells, were a new cell type that can clear β-amyloid peptides in the AD transgene mice and in NG2 cell line. RESULTS: NG2 cells were recruited and clustered around the amyloid plaque in the APPswe/PS1dE9 mice, which is Alzheimer\u27s disease mouse model. In vitro, NG2 cell line and primary NG2 cells engulfed β-amyloid peptides through the mechanisms of endocytosis in a time dependent manner. Endocytosis is divided into pinocytosis and phagocytosis. Aβ(42) internalization by NG2 cells was mediated by actin-dependent macropinocytosis. The presence of β-amyloid peptides stimulated the autophagic pathway in NG2 cells. Once inside the cells, the β-amyloid peptides in NG2 cells were transported to lysosomes and degraded by autophagy. CONCLUSIONS: Our findings suggest that NG2 cells are a new cell type that can clear β-amyloid peptides through endocytosis and autophagy

    A structural model for the full-length blue light-sensing protein YtvA from Bacillus subtilis, based on EPR spectroscopy

    Get PDF
    A model for the full-length structure of the blue light-sensing protein YtvA from Bacillus subtilis has been determined by EPR spectroscopy, performed on spin labels selectively inserted at amino acid positions 54, 80, 117 and 179. Our data indicate that YtvA forms a dimer in solution and enable us, based on the known structures of the individual domains and modelling, to propose a three-dimensional model for the full length protein. Most importantly, this includes the YtvA N-terminus that has so far not been identified in any structural model. We show that our data are in agreement with the crystal structure of an engineered LOV-domain protein, YF1, that shows the N-terminus of the protein to be helical and to fold back in between the β-sheets of the two LOV domains, and argue for an identical arrangement in YtvA. While we could not detect any structural changes upon blue-light activation of the protein, this structural model now forms an ideal basis for identifying residues as targets for further spin labelling studies to detect potential conformational changes upon irradiation of the protein

    PACT/RAX Regulates the Migration of Cerebellar Granule Neurons in the Developing Cerebellum

    Get PDF
    PACT and its murine ortholog RAX were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase PKR. Recent studies indicated that RAX played a role in embryogenesis and neuronal development. In this study, we investigated the expression of RAX during the postnatal development of the mouse cerebellum and its role in the migration of cerebellar granule neurons (CGNs). High expression of RAX was observed in the cerebellum from postnatal day (PD) 4 to PD9, a period when the CGNs migrate from the external granule layer (EGL) to the internal granule layer (IGL). The migration of the EGL progenitor cells in vivo was inhibited by RAX knockdown on PD4. This finding was confirmed by in vitro studies showing that RAX knockdown impaired the migration of CGNs in cerebellar microexplants. PACT/RAX-regulated migration required its third motif and was independent of PKR. PACT/RAX interacted with focal adhesion kinase (FAK) and PACT/RAX knockdown disturbed the FAK phosphorylation in CGNs. These findings demonstrated a novel function of PACT/RAX in the regulation of neuronal migration

    The role of N-glycosylation of CD200-CD200R1 interaction in classical microglial activation

    No full text
    Abstract Background Microglial inflammatory activation is the common feature of the central nervous system (CNS) diseases. Microglia can be activated and particularly polarized toward a dual role in the injured CNS. The CD200 receptor 1 (CD200R1) inhibits inflammatory microglia activation as illustrated by studies. Publications show abnormal activation of microglia secondary to the deficient inhibit of CD200-CD200R interaction. In the present study, we established a neuronal-microglia co-culture system to investigate the association between CD200R1 engagement and classical microglial activation. We analyzed the glycosylation of CD200R1 and the CD200 binding. Secretion of pro-inflammatory cytokines were measured. Results CD200R1 was N-glycosylated at Asparagine 44 (Asn44, N44). Mutation of this site disrupted CD200-CD200R1 interaction and up-regulated the expression of cytokines iNOS, CD86, IL-1β and TNF-α. Conclusion N44 of CD200R1 is a significant binding site for CD200-CD200R1 interaction and play a critical role in the maintenance of microglia. The N-glycosylation of CD200R1 could serve as a therapeutic agent for CNS inflammation

    Germline TP53 and MSH6 mutations implicated in sporadic triple-negative breast cancer (TNBC): a preliminary study

    No full text
    Abstract Background Germline BRCA1/2 prevalence is relatively low in sporadic triple-negative breast cancer (TNBC). We hypothesized that non-BRCA genes may also have significant germline contribution to Chinese sporadic TNBC, and the somatic mutational landscape of TNBC may vary between ethnic groups. We therefore conducted this study to investigate germline and somatic mutations in 43 cancer susceptibility genes in Chinese sporadic TNBC. Patients and methods Sixty-six Chinese sporadic TNBC patients were enrolled in this study. Germline and tumor DNA of each patient were subjected to capture-based next-generation sequencing using a 43-gene panel. Standard bioinformatic analysis and variant classification were performed to identify deleterious/likely deleterious germline mutations and somatic mutations. Mutational analysis was conducted to identify significantly mutated genes. Results Deleterious/likely deleterious germline mutations were identified in 27 (27/66, 40.9%) patients. Among the 27 patients, 9 (9/66, 13.6%) were TP53 carriers, 5 (5/66, 7.6%) were MSH6 carriers, and 5 (5/66, 7.6%) were BRCA1 carriers. Somatic mutations were identified in 64 (64/66, 97.0%) patients. TP53 somatic mutations occurred in most of the patients (45/66, 68.2%) and with highest mean allele frequency (28.1%), while NF1 and POLE were detected to have the highest mutation counts. Conclusions Our results supported our hypotheses and suggested great potentials of TP53 and MSH6 as novel candidates for TNBC predisposition genes. The high frequency of somatic NF1 and POLE mutations in this study showed possibilities for clinical benefits from androgen-blockade therapies and immunotherapies in Chinese TNBC patients. Our study indicated necessity of multi-gene testing for TNBC prevention and treatment
    corecore