51 research outputs found

    Wnt signaling in triple negative breast cancer is associated with metastasis

    Get PDF
    Background Triple Negative subset of (TN) Breast Cancers (BC), a close associate of the basal-like subtype (with limited discordance) is an aggressive form of the disease which convey unpredictable, and poor prognosis due to limited treatment options and lack of proven effective targeted therapies. Methods We conducted an expression study of 240 formalin-fixed, paraffin-embedded (FFPE) primary biopsies from two cohorts, including 130 TN tumors, to identify molecular mechanisms of TN disease. Results The annotation of differentially expressed genes in TN tumors contained an overrepresentation of canonical Wnt signaling components in our cohort and others. These observations were supported by upregulation of experimentally induced oncogenic Wnt/β-catenin genes in TN tumors, recapitulated using targets induced by Wnt3A. A functional blockade of Wnt/β-catenin pathway by either a pharmacological Wnt-antagonist, WntC59, sulidac sulfide, or β-catenin (functional read out of Wnt/β-catenin pathway) SiRNA mediated genetic manipulation demonstrated that a functional perturbation of the pathway is causal to the metastasis- associated phenotypes including fibronectin-directed migration, F-actin organization, and invasion in TNBC cells. A classifier, trained on microarray data from β-catenin transfected mammary cells, identified a disproportionate number of TNBC breast tumors as compared to other breast cancer subtypes in a meta-analysis of 11 studies and 1,878 breast cancer patients, including the two cohorts published here. Patients identified by the Wnt/β-catenin classifier had a greater risk of lung and brain, but not bone metastases. Conclusion These data implicate transcriptional Wnt signaling as a hallmark of TNBC disease associated with specific metastatic pathways

    Alcohol, Smoking, and Caffeine in Relation to Fecundability, with Effect Modification by NAT2

    Get PDF
    Common polymorphisms in the N-acetyltransferase-2 (NAT2) metabolic enzyme determine slow or rapid acetylator phenotypes. We investigated the effects of alcohol, smoking, and caffeine on fecundability, and determined whether the effects were modified by NAT2

    CYP2D6 Genotype and Tamoxifen Response in Postmenopausal Women with Endocrine-Responsive Breast Cancer: The Breast International Group 1-98 Trial

    Get PDF
    Background Adjuvant tamoxifen therapy is effective for postmenopausal women with endocrine-responsive breast cancer. Cytochrome P450 2D6 (CYP2D6) enzyme metabolizes tamoxifen to clinically active metabolites, and CYP2D6 polymorphisms may adversely affect tamoxifen efficacy. In this study, we investigated the clinical relevance of CYP2D6 polymorphisms. Methods We obtained tumor tissues and isolated DNA from 4861 of 8010 postmenopausal women with hormone receptor-positive breast cancer who enrolled in the randomized, phase III double-blind Breast International Group (BIG) 1-98 trial between March 1998 and May 2003 and received tamoxifen and/or letrozole treatment. Extracted DNA was used for genotyping nine CYP2D6 single-nucleotide polymorphisms using polymerase chain reaction-based methods. Genotype combinations were used to categorize CYP2D6 metabolism phenotypes as poor, intermediate, and extensive metabolizers (PM, IM, and EM, respectively; n = 4393 patients). Associations of CYP2D6 metabolism phenotypes with breast cancer-free interval (referred to as recurrence) and treatment-induced hot flushes according to randomized endocrine treatment and previous chemotherapy were assessed. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). All statistical tests were two-sided. Results No association between CYP2D6 metabolism phenotypes and breast cancer-free interval was observed among patients who received tamoxifen monotherapy without previous chemotherapy (P = .35). PM or IM phenotype had a non-statistically significantly reduced risk of breast cancer recurrence compared with EM phenotype (PM or IM vs EM, HR of recurrence = 0.86, 95% CI = 0.60 to 1.24). CYP2D6 metabolism phenotype was associated with tamoxifen-induced hot flushes (P = .020). Both PM and IM phenotypes had an increased risk of tamoxifen-induced hot flushes compared with EM phenotype (PM vs EM, HR of hot flushes = 1.24, 95% CI = 0.96 to 1.59; IM vs EM, HR of hot flushes = 1.23, 95% CI = 1.05 to 1.43). Conclusions CYP2D6 phenotypes of reduced enzyme activity were not associated with worse disease control but were associated with increased hot flushes, contrary to the hypothesis. The results of this study do not support using the presence or absence of hot flushes or the pharmacogenetic testing of CYP2D6 to determine whether to treat postmenopausal breast cancer patients with tamoxife

    The MADS-Domain Transcriptional Regulator AGAMOUS-LIKE15 Promotes Somatic Embryo Development in Arabidopsis and Soybean1[OA]

    Get PDF
    The MADS-domain transcriptional regulator AGAMOUS-LIKE15 (AGL15) has been reported to enhance somatic embryo development when constitutively expressed. Here we report that loss-of-function mutants of AGL15, alone or when combined with a loss-of-function mutant of a closely related family member, AGL18, show decreased ability to produce somatic embryos. If constitutive expression of orthologs of AGL15 is able to enhance somatic embryo development in other species, thereby facilitating recovery of transgenic plants, then AGL15 may provide a valuable tool for crop improvement. To test this idea in soybean (Glycine max), a full-length cDNA encoding a putative ortholog of AGL15 was isolated from soybean somatic embryos. Subsequently, the corresponding genomic region of the gene was obtained. This gene, designated GmAGL15, encodes a protein with highest similarity to AGL15 from Arabidopsis (Arabidopsis thaliana) and Brassica napus that accumulates to its highest amount in embryos in these species. Like Arabidopsis and Brassica AGL15, GmAGL15 was preferentially expressed in developing embryos. When ectopically overexpressed the soybean protein was able to enhance somatic embryo development in soybean

    LncRNA LOXL1-AS1 Promotes the Proliferation and Metastasis of Medulloblastoma by Activating the PI3K/AKT Pathway

    No full text
    Medulloblastoma is the most common malignant brain tumor of childhood, with great potential to metastasize. However, the mechanisms of how medulloblastoma develops and progresses remain to be elucidated. The present study assessed the role of long noncoding RNA LOXL1-AS1 (lncRNA LOXL1-AS1) in the cell proliferation and metastasis in human medulloblastoma. It was initially found that LOXL1-AS1 was significantly overexpressed in clinical medulloblastoma tissues compared with the adjacent noncancerous tissues. LOXL1-AS1 was also highly expressed in medulloblastoma at advanced stages and differentially expressed in a series of medulloblastoma cell lines. Knockdown of LOXL1-AS1 using shRNAs significantly inhibited cell viability and colony formation capacities in D283 and D341 cells. Moreover, the cell proportion in the S phase was significantly increased, while the cell proportion in the G2/M phase was decreased after knockdown of LOXL1-AS1 in D283 cells and D341 cells. Cell cycle arrest led to eventual cell apoptosis by LOXL1-AS1 knockdown. Moreover, in a xenograft model of human medulloblastoma, knockdown of LOXL1-AS1 significantly inhibited tumor growth and promoted tumor cell apoptosis. In addition, knockdown of LOXL1-AS1 inhibited cell migration and reversed epithelial-to-mesenchymal transition (EMT). Western blot analysis further revealed that knockdown of LOXL1-AS1 decreased the phosphorylated levels of PI3K and AKT without affecting their total protein levels. These results suggest that LncRNA LOXL1-AS1 promoted the proliferation and metastasis of medulloblastoma by activating the PI3K-AKT pathway, providing evidence that knockdown of LncRNA LOXL1-AS1 might be a potential therapeutic strategy against medulloblastoma

    Axial compressive behaviour of square through-beam joints between CFST columns and RC beams with multi-layers of steel meshes

    No full text
    The axial compressive behaviour of an innovative type of square concrete filled steel tube (CFST) column to reinforced concrete (RC) beam joint was experimentally investigated in this paper. The innovative joint was designed such that (i) the steel tubes of the CFST columns were completely interrupted in the joint region, (ii) the longitudinal reinforcements from the RC beams could easily pass through the joint area and (iii) a reinforcement cage, including a series of reinforcement meshes and radial stirrups, was arranged in the joint area to strengthen the mechanical performance of the joint. A twostage experimental study was conducted to investigate the behaviour of the innovative joint under axial compression loads, where the first stage of the tests included three fullscale innovative joint specimens subjected to axial compression to assess the feasibility of the joint detailing and propose measures to further improve its axial compressive behaviour, and the second stage of the tests involved 14 innovative joint specimens with the improved detailing to study the effect of the geometric size of the joint, concrete strength and volume ratio of the steel meshes on the bearing strengths of the joints. It was generally found from the experiments that (i) the innovative joint is capable of achieving the design criterion of the 'strong jointweak member' with appropriate designs, and (ii) by decreasing the height factor and increasing the volume ratio of the steel meshes, the axial compressive strengths of the joints significantly increased, while the increase of the length factor is advantageous but limited to the resistances of the joint specimens. Because of the lack of existing design methods for the innovative joints, new design expressions were proposed to calculate the axial compression resistances of the innovative joints subjected to bearing loads, with the local compression effect, the confinement effect provided by the multilayers of steel meshes and the height effect of concrete considered. It was found that the proposed design methods were capable of providing accurate and safe resistance predictions for the innovative joints.Published versio
    • …
    corecore