1,901 research outputs found

    Diabetes and other vascular risk factors in association with the risk of lower extremity amputation in chronic limb-threatening ischemia: a prospective cohort study

    Get PDF
    BACKGROUND: Patients with diabetes are at increased risk of developing chronic limb-threatening ischemia (CLTI) due to peripheral arterial disease, and this often results in lower extremity amputation (LEA). Little is known of the interaction between diabetes and other vascular risk factors in affecting the risk of CLTI. METHODS: We investigated the association of diabetes, and its interaction with hypertension, body mass index (BMI) and smoking, with the risk of LEA due to CLTI in the population-based Singapore Chinese Health Study. Participants were interviewed at recruitment (1993-1998) and 656 incident LEA cases were identified via linkage with nationwide hospital database through 2017. Multivariate-adjusted Cox proportional hazards models were used to compute hazard ratios (HRs) and 95% CIs for the associations. RESULTS: The HR (95% CI) for LEA risk was 13.41 (11.38-15.79) in participants with diabetes compared to their counterparts without diabetes, and the risk increased in a stepwise manner with duration of diabetes (P for trend < 0.0001). Hypertension and increased BMI independently increased LEA risk in those without diabetes but did not increase the risk in those with diabetes (P for interaction with diabetes ≤ 0.0006). Conversely, current smoking conferred a risk increment of about 40% regardless of diabetes status. CONCLUSIONS: Although diabetes conferred more than tenfold increase in risk of LEA, hypertension and increased BMI did not further increase LEA risk among those with diabetes, suggesting a common mechanistic pathway for these risk factors. In contrast, smoking may act via an alternative pathway and thus confer additional risk regardless of diabetes status

    Rapid aneuploidy testing (knowing less) versus traditional karyotyping (knowing more) for advanced maternal age: What would be missed, who should decide?

    Get PDF
    Objectives The application of rapid aneuploidy testing as a stand-alone approach in prenatal diagnosis is much debated. The major criticism of this targeted approach is that it will not detect other chromosomal abnormalities that will be picked up by traditional karyotyping. This study aimed to study the nature of such chromosomal abnormalities and whether parents would choose to terminate affected pregnancies. Design Retrospective study on a cytogenetic database. Setting Eight public hospitals in Hong Kong. Participants The karyotype results of 19 517 amniotic fluid cultures performed for advanced maternal age (≥35 years) from 1997 to 2002 were classified according to whether they were detectable by rapid aneuploidy testing. The outcomes of pregnancies with abnormal karyotypes were reviewed from patient records. Results In all, 333 (1.7%) amniotic fluid cultures yielded abnormal karyotypes; 175 (52.6%) of these were detected by rapid aneuploidy testing, and included trisomy 21 (n=94, 28.2%), trisomy 18 or 13 (n=21, 6.3%), and sex chromosome abnormalities (n=60, 18.0%). The other 158 (47.4%) chromosomal abnormalities were not detectable by rapid aneuploidy testing, of which 63 (18.9%) were regarded to be of potential clinical significance and 95 (28.5%) of no clinical significance. Pregnancy outcomes in 327/333 (98.2%) of these patients were retrieved. In total, 143 (42.9%) of these pregnancies were terminated: 93/94 (98.9%) for trisomy 21, 20/21 (95.2%) for trisomy 18 or 13, 19/60 (31.7%) for sex chromosome abnormalities, and 11/63 (17.5%) for other chromosomal abnormalities with potential clinical significance. There were no terminations in the 95 pregnancies in which karyotyping results were regarded to be of no clinical significance. Conclusions 'Knowing less' by the rapid aneuploidy stand-alone testing could miss about half of all chromosomal abnormalities detectable by amniocentesis performed for advanced maternal age. Findings from two fifths of the latter were of potential clinical significance, and the parents chose to terminate one out of six of the corresponding pregnancies. If both techniques are available, parents could have enhanced autonomy to choose.published_or_final_versio

    Reducing the life cycle environmental impact of electric vehicles through emissions-responsive charging

    Get PDF
    Electric vehicles (EVs) are currently being promoted to reduce transport emissions. We present a life cycle assessment of EV charging behaviours based on marginal emissions factors. For Great Britain, we find that electricity consumption accounts for the highest proportion of life cycle carbon emissions from EVs. We highlight the potential life cycle carbon emissions reduction brought by charging during periods when the grid mix produces relatively low emissions. While our study focuses on Great Britain, we have applied our methodology to several European countries with contrasting electricity generation mixes. Our analysis demonstrates that countries with a high proportion of fossil energy will have reduced benefits from deploying EVs, but are likely to achieve increased benefits from smart charging approaches. We conclude that using marginal emissions factors is essential to understanding the greenhouse gas impacts of EV deployment, and that smart charging tied to instantaneous grid emissions factors can bring benefits

    TSC1/2 mutations define a molecular subset of HCC with aggressive behaviour and treatment implication

    Get PDF
    Objective We investigated the mutational landscape of mammalian target of rapamycin (mTOR) signalling cascade in hepatocellular carcinomas (HCCs) with chronic HBV background, aiming to evaluate and delineate mutation-dependent mechanism of mTOR hyperactivation in hepatocarcinogenesis. Design We performed next-generation sequencing on human HCC samples and cell line panel. Systematic mutational screening of mTOR pathway-related genes was undertaken and mutant genes were evaluated based on their recurrence. Protein expressions of tuberous sclerosis complex (TSC)1, TSC2 and pRPS6 were assessed by immunohistochemistry in human HCC samples. Rapamycin sensitivity was estimated by colony-formation assay in HCC cell lines and the treatment was further tested using our patient-derived tumour xenograft (PDTX) models. Results We identified and confirmed multiple mTOR components as recurrently mutated in HBV-associated HCCs. Of significance, we detected frequent (16.2%, n=18/111) mutations of TSC1 and TSC2 genes in the HCC samples. The spectrum of TSC1/2 mutations likely disrupts the endogenous gene functions in suppressing the downstream mTOR activity through different mechanisms and leads to more aggressive tumour behaviour. Mutational disruption of TSC1 and TSC2 was also observed in HCC cell lines and our PDTX models. TSC-mutant cells exhibited reduced colony-forming ability on rapamycin treatment. With the use of biologically relevant TSC2-mutant PDTXs, we demonstrated the therapeutic benefits of the hypersensitivity towards rapamycin treatment. Conclusions Taken together, our findings suggest the significance of previously undocumented mutation-dependent mTOR hyperactivation and frequent TSC1/2 mutations in HBV-associated HCCs. They define a molecular subset of HCC having genetic aberrations in mTOR signalling, with potential significance of effective specific drug therapy.published_or_final_versio

    Inhibition of YAP/TAZ-driven TEAD activity prevents growth of NF2-null schwannoma and meningioma.

    Get PDF
    Schwannoma tumours typically arise on the 8th cranial nerve and are mostly caused by loss of the tumour suppressor Merlin (NF2). There are no approved chemotherapies for these tumours and the surgical removal of the tumour carries a high risk of damage to the 8th or other close cranial nerve tissue. New treatments for schwannoma and other NF2-null tumours such as meningioma are urgently required. Using a combination of human primary tumour cells and mouse models of schwannoma, we have examined the role of the Hippo signalling pathway in driving tumour cell growth. Using both genetic ablation of the Hippo effectors YAP and TAZ as well as novel TEAD palmitoylation inhibitors, we show that Hippo signalling may be successfully targeted in vitro and in vivo to both block and, remarkably, regress schwannoma tumour growth. In particular, successful use of TEAD palmitoylation inhibitors in a pre-clinical mouse model of schwannoma points to their potential future clinical use. We also identify the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) as a Hippo signalling target, driven by the TAZ protein in human and mouse NF2-null schwannoma cells, as well as in NF2-null meningioma cells, and examine the potential future role of this new target in halting schwannoma and meningioma tumour growth

    Beta-2-transferrin to detect cerebrospinal fluid pleural effusion: a case report

    Get PDF
    Abstract Introduction Pleural effusion secondary to ventriculoperitoneal shunt insertion is a rare and potentially life-threatening occurrence. Case presentation We describe a 14-month-old Caucasian boy who had a ventriculoperitoneal shunt inserted for progressive hydrocephalus of unknown etiology. Two and a half months post-shunt insertion, the patient presented with mild respiratory distress. A chest radiograph revealed a large right pleural effusion and a shunt series demonstrated an appropriately placed distal catheter tip. A subsequent abdominal ultrasound revealed marked ascites. Fluid drained via tube thoracostomy was sent for beta-2-transferrin electrophoresis. A positive test was highly suggestive of cerebral spinal fluid hydrothorax. Post-externalization of the ventriculoperitoneal shunt, the ascites and pleural effusion resolved. Conclusion Testing for beta-2-transferrin protein in pleural fluid may serve as a useful technique for diagnosing cerebrospinal fluid hydrothorax in patients with ventriculoperitoneal shunts

    Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures

    Get PDF
    Simvastatin has been shown to have anti-inflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on Toll-like receptor (TLR) signalling in primary human monocytes was investigated. A short pre-treatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor-α (TNF) in response to TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-κB activation without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-inflammatory effects

    Cardiovascular Risk Factors and Knowledge of Symptoms Among Vietnamese Americans

    Get PDF
    BACKGROUND: There are few population-based studies of cardiovascular risk factors, knowledge, and related behaviors among Vietnamese Americans. OBJECTIVE: To describe cardiovascular risk factors, knowledge, and related behaviors among Vietnamese Americans and compare the results to non-Hispanic whites. DESIGN: Comparison of data from two populationbased, cross-sectional telephone surveys

    A Novel Inhibitor of Human La Protein with Anti-HBV Activity Discovered by Structure-Based Virtual Screening and In Vitro Evaluation

    Get PDF
    Background: Over 350 million people worldwide are infected with hepatitis B virus (HBV), a major cause of liver failure and hepatocellular carcinoma. Current therapeutic agents are highly effective, but are also associated with development of viral resistance. Therefore, strategies for identifying other anti-HBV agents with specific, but distinctive mechanisms of action are needed. The human La (hLa) protein, which forms a stabilizing complex with HBV RNA ribonucleoprotein to promote HBV replication, is a promising target of molecular therapy. Aims: This study aimed to discover novel inhibitors of hLa that could inhibit HBV replication and expression. Methods: A multistage molecular docking approach was used to screen a Specs database and an in-house library against hLa binding sites. Sequential in vitro evaluations were performed to detect potential compounds with high scores in HepG2.2.15 cells. Results: Of the 26 potential compounds with high scores chosen for experimental verification, 12 had HBV DNA inhibition ratios of less than 50 % with P,0.05. Six had significant inhibition of HBV e antigen (HBeAg) levels, and 13 had significant inhibition of HBV surface antigen (HBsAg) levels by in vitro assays. Compounds HBSC-11, HBSC-15 and HBSC-34 (HBSC is system prefix for active compounds screened by the library) were selected for evaluation. HBSC-11 was found to have an obvious inhibitory effect on hLa transcription and expression

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease
    • …
    corecore