42,011 research outputs found

    Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires

    Get PDF
    Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces

    A systematic TMRT observational study of Galactic 12^{12}C/13^{13}C ratios from Formaldehyde

    Full text link
    We present observations of the C-band 1101111_{10}-1_{11} (4.8 GHz) and Ku-band 2112122_{11}-2_{12} (14.5 GHz) K-doublet lines of H2_2CO and the C-band 1101111_{10}-1_{11} (4.6 GHz) line of H2_213^{13}CO toward a large sample of Galactic molecular clouds, through the Shanghai Tianma 65-m radio telescope (TMRT). Our sample with 112 sources includes strong H2_2CO sources from the TMRT molecular line survey at C-band and other known H2_2CO sources. All three lines are detected toward 38 objects (43 radial velocity components) yielding a detection rate of 34\%. Complementary observations of their continuum emission at both C- and Ku-bands were performed. Combining spectral line parameters and continuum data, we calculate the column densities, the optical depths and the isotope ratio H2_212^{12}CO/H2_213^{13}CO for each source. To evaluate photon trapping caused by sometimes significant opacities in the main isotopologue's rotational mm-wave lines connecting our measured K-doublets, and to obtain 12^{12}C/13^{13}C abundance ratios, we used the RADEX non-LTE model accounting for radiative transfer effects. This implied the use of the new collision rates from \citet{Wiesenfeld2013}. Also implementing distance values from trigonometric parallax measurements for our sources, we obtain a linear fit of 12^{12}C/13^{13}C = (5.08±\pm1.10)DGC_{GC} + (11.86±\pm6.60), with a correlation coefficient of 0.58. DGC_{GC} refers to Galactocentric distances. Our 12^{12}C/13^{13}C ratios agree very well with the ones deduced from CN and C18^{18}O but are lower than those previously reported on the basis of H2_2CO, tending to suggest that the bulk of the H2_2CO in our sources was formed on dust grain mantles and not in the gas phase.Comment: 27 pages, 8 figures, 7 tables. Accepted for publication in The Astrophysical Journa

    Optical band edge shift of anatase cobalt-doped titanium dioxide

    Get PDF
    We report on the optical properties of magnetic cobalt-doped anatase phase titanium dioxide Ti_{1-x}Co_{x}O_{2-d} films for low doping concentrations, 0 <= x <= 0.02, in the spectral range 0.2 to 5 eV. For well oxygenated films (d << 1) the optical conductivity is characterized by an absence of optical absorption below an onset of interband transitions at 3.6 eV and a blue shift of the optical band edge with increasing Co concentration. The absence of below band gap absorption is inconsistent with theoretical models which contain midgap magnetic impurity bands and suggests that strong on-site Coulomb interactions shift the O-band to Co-level optical transitions to energies above the gap.Comment: 5 pages, 4 figures, 1 table; Version 2 - major content revisio

    Characterization of high-oleic peanut natural mutants derived from an intersectional cross

    Get PDF
    As compared with its normal oleate counterpart, high oleate peanuts have better storage quality and several health benefits, and are therefore preferred by peanut shellers and consumers. High oleate has now become one of the main breeding objectives of peanuts. Thus far, over 50 high oleate peanut cultivars have been registered. Yet high oleate peanut breeding relies heavily on a limited number of high oleate genotypes. In this paper, we reported, for the first time, high peanut oleate natural mutants with large seeds derived from an intersectional cross, which were identified with near infra-red spectroscopy and confirmed by gas chromatography. Sequencing of <em>FAD2</em> from the high-oleic hybrids along with their normal oleate parents indicated that a 448G >A mutation in <em>FAD2A</em> coupled with a 441_442ins A or G in <em>FAD2B</em> together caused high oleate phenotypes in these peanut hybrids.<br><br>En comparación con su homólogo con contenido normal de oleico, el maní alto oleato mantiene una mejor calidad durante la conservación y tiene beneficios para la salud, y de ahí que sea preferido por desgranadoras de maní y por los consumidores. El alto oleato se ha convertido actualmente en uno de los principales objetivos para la mejora del maní. Hasta el momento, más de 50 cultivares de maní alto oleato han sido registrados. Sin embargo, la reproducción de maní alto oleato se basa principalmente en un número limitado de genotipos alto oleato. En este trabajo se presentan por primera vez mutantes naturales de maní alto oleato con semillas derivadas de un cruce de intersecciones, que fue identificado mediante espectroscopia de infrarrojo cercano y se confirma me diante cromatografía de gases. La secuenciación de <em>FAD2</em> de los híbridos de alto oleico junto con sus progenitores oleato normal, indicó que la mutación 448G >A en <em>FAD2A</em> unido a un 441_442ins A o G en <em>FAD2B</em> juntos da lugar a fenotipos alto oleato en estos híbridos de maní

    Unveiling the critical role of TiO2-supported atomically dispersed Cu species for enhanced photofixation of N2 to nitrate

    Get PDF
    Nitrate products are widely used in manufacturing as crucial raw materials and fertilizers. The traditional nitrate synthesis process involves high energy consumption and emission, thereby opposing the goals of zero-carbon emission and green chemistry. Thus, a sustainable roadmap for nitrate synthesis that uses green energy input, clean N sources, and direct catalytic processes is urgently required (e.g., developing a novel photosynthesis system). Here, we synthesized TiO2-supported atomically dispersed Cu species for N2 photofixation to nitrate in a flow reactor. The optimized photocatalyst yielded a high nitrate photosynthesis rate of 0.93 μmol h−1 and selectivity of ∼90%, which is superior to most of the values reported thus far. Further, experimental results and in-situ investigations revealed that the atomically dispersed Cu sites in the as-designed sample significantly enhanced the separation and transfer efficiency of photogenerated carriers, adsorption and activation of reactants, and the formation of chemisorbed NOx intermediates, thereby realizing the excellent photofixation of N2 to nitrate
    corecore