13,357 research outputs found

    Strong correlations generically protect d-wave superconductivity against disorder

    Get PDF
    We address the question of why strongly correlated d-wave superconductors, such as the cuprates, prove to be surprisingly robust against the introduction of non-magnetic impurities. We show that, very generally, both the pair-breaking and the normal state transport scattering rates are significantly suppressed by strong correlations effects arising in the proximity to a Mott insulating state. We also show that the correlation-renormalized scattering amplitude is generically enhanced in the forward direction, an effect which was previously often ascribed to the specific scattering by charged impurities outside the copper-oxide planes.Comment: 4+e page

    Numerical methods for nonlinear Dirac equation

    Full text link
    This paper presents a review of the current state-of-the-art of numerical methods for nonlinear Dirac (NLD) equation. Several methods are extendedly proposed for the (1+1)-dimensional NLD equation with the scalar and vector self-interaction and analyzed in the way of the accuracy and the time reversibility as well as the conservation of the discrete charge, energy and linear momentum. Those methods are the Crank-Nicolson (CN) schemes, the linearized CN schemes, the odd-even hopscotch scheme, the leapfrog scheme, a semi-implicit finite difference scheme, and the exponential operator splitting (OS) schemes. The nonlinear subproblems resulted from the OS schemes are analytically solved by fully exploiting the local conservation laws of the NLD equation. The effectiveness of the various numerical methods, with special focus on the error growth and the computational cost, is illustrated on two numerical experiments, compared to two high-order accurate Runge-Kutta discontinuous Galerkin methods. Theoretical and numerical comparisons show that the high-order accurate OS schemes may compete well with other numerical schemes discussed here in terms of the accuracy and the efficiency. A fourth-order accurate OS scheme is further applied to investigating the interaction dynamics of the NLD solitary waves under the scalar and vector self-interaction. The results show that the interaction dynamics of two NLD solitary waves depend on the exponent power of the self-interaction in the NLD equation; collapse happens after collision of two equal one-humped NLD solitary waves under the cubic vector self-interaction in contrast to no collapse scattering for corresponding quadric case.Comment: 39 pages, 13 figure

    Dynamic Studies of Scaffold-dependent Mating Pathway in Yeast

    Get PDF
    The mating pathway in \emph{Saccharomyces cerevisiae} is one of the best understood signal transduction pathways in eukaryotes. It transmits the mating signal from plasma membrane into the nucleus through the G-protein coupled receptor and the mitogen-activated protein kinase (MAPK) cascade. According to the current understandings of the mating pathway, we construct a system of ordinary differential equations to describe the process. Our model is consistent with a wide range of experiments, indicating that it captures some main characteristics of the signal transduction along the pathway. Investigation with the model reveals that the shuttling of the scaffold protein and the dephosphorylation of kinases involved in the MAPK cascade cooperate to regulate the response upon pheromone induction and to help preserving the fidelity of the mating signaling. We explored factors affecting the dose-response curves of this pathway and found that both negative feedback and concentrations of the proteins involved in the MAPK cascade play crucial role. Contrary to some other MAPK systems where signaling sensitivity is being amplified successively along the cascade, here the mating signal is transmitted through the cascade in an almost linear fashion.Comment: 36 pages, 9 figure

    Quark charge balance function and hadronization effects in relativistic heavy ion collisions

    Full text link
    We calculate the charge balance function of the bulk quark system before hadronization and those for the directly produced and the final hadron system in high energy heavy ion collisions. We use the covariance coefficient to describe the strength of the correlation between the momentum of the quark and that of the anti-quark if they are produced in a pair and fix the parameter by comparing the results for hadrons with the available data. We study the hadronization effects and decay contributions by comparing the results for hadrons with those for the bulk quark system. Our results show that while hadronization via quark combination mechanism slightly increases the width of the charge balance functions, it preserves the main features of these functions such as the longitudinal boost invariance and scaling properties in rapidity space. The influence from resonance decays on the width of the balance function is more significant but it does not destroy its boost invariance and scaling properties in rapidity space either. The balance functions in azimuthal direction are also presented.Comment: 9 figure

    Pairwise Operator Learning for Patch Based Single-image Super-resolution

    Get PDF
    Motivated by the fact that image patches could be inherently represented by matrices, single-image super-resolution is treated as a problem of learning regression operators in a matrix space in this paper. The regression operators that map low-resolution image patches to high-resolution image patches are generally defined by left and right multiplication operators. The pairwise operators are respectively used to extract the raw and column information of low-resolution image patches for recovering high-resolution estimations. The patch based regression algorithm possesses three favorable properties. Firstly, the proposed super-resolution algorithm is efficient during both training and testing, because image patches are treated as matrices. Secondly, the data storage requirement of the optimal pairwise operator is far less than most popular single-image super-resolution algorithms because only two small sized matrices need to be stored. Lastly, the super-resolution performance is competitive with most popular single-image super-resolution algorithms because both raw and column information of image patches is considered. Experimental results show the efficiency and effectiveness of the proposed patch-based single-image superresolution algorithm
    • …
    corecore