3,917 research outputs found

    A fiber-optic current sensor for aerospace applications

    Get PDF
    A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given

    Fiber-optic sensors for aerospace electrical measurements: An update

    Get PDF
    Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work

    Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CuInS2 for visible light energy conversion

    Get PDF
    Well-aligned ZnO nanorods were uniformly coated with a layer of CuInS2 nanoparticle photosensitizers using a tailored sequential pulsed electrodeposition. The formation of CuInS2-ZnO heterojunction with well-matched band energy alignment and the superior electron mobility in ZnO nanorods led to a remarkable 3.75 times improved photoelectrochemical performance of the electrode under visible light irradiation

    Renal dysfunction independently predicts muscle mass loss in patients following liver transplantation

    Full text link
    Liver transplantation (LT) is the only curative treatment for cirrhosis. However, the presence of complications can impact outcomes following LT. Sarcopenia, or muscle mass loss, is highly prevalent in patients with cirrhosis and is associated with longer hospitalization stays and a higher infection rate post-surgery. We aimed to identify patients at higher risk of early sarcopenia post-LT. METHODS: This retrospective study included 79 cirrhotic patients who underwent LT. Muscle mass was evaluated using the third lumbar spine vertebra skeletal muscle mass index (SMI) and sarcopenia was defined using established cut-off values. Computerized tomography (CT) scans performed within six-month peri-operative period (three months pre- and post-LT) were included in the study. Complications and comorbidities were collected and correlated to SMI post-LT and predictive models for SMI post-LT were constructed. RESULTS: The overall prevalence of sarcopenia was 46% and 62% before and after LT, respectively. Newly developed sarcopenia was found in 42% of patients. Post-LT sarcopenia was associated with longer hospital stays (54±37 vs 29±10 days, p = 0.002), higher number of infection (3±1 vs 1±2, p = 0.027), and greater number of complications (5±2 vs 3±2, p <0.001) compared to absence of sarcopenia. Multivariate analyses showed that the SMI post-LT was independently associated with pre-LT renal function markers, the glomerular filtration rate (GFR) and creatinine (Model 1, GFR: β = 0.33; 95% CI = 0.04–0.17; p = 0.003; Model 2, Creatinine: β = –0.29; 95% CI = –0.10 to –0.02; p = 0.009). CONCLUSIONS: The present study highlights the potential role of renal dysfunction in the development and persistence of sarcopenia after LT

    Evaluation of laser-based spectrometers for greenhouse gas flux measurements in coastal marshes

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography: Methods 14 (2016): 466–476, doi:10.1002/lom3.10105.Precise and rapid analyses of greenhouse gases (GHGs) will advance understanding of the net climatic forcing of coastal marsh ecosystems. We examined the ability of a cavity ring down spectroscopy (CRDS) analyzer (Model G2508, Picarro) to measure carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes in real-time from coastal marshes through comparisons with a Shimadzu GC-2014 (GC) in a marsh mesocosm experiment and with a similar laser-based N2O analyzer (Model N2O/CO, Los Gatos Research) in both mesocosm and field experiments. Minimum (analytical) detectable fluxes for all gases were more than one order of magnitude lower for the Picarro than the GC. In mesocosms, the Picarro analyzer detected several CO2, CH4, and N2O fluxes that the GC could not, but larger N2O fluxes (218–409 μmol m−2 h−1) were similar between analyzers. Minimum detectable fluxes for the Picarro were 1 order of magnitude higher than the Los Gatos analyzer for N2O. The Picarro and Los Gatos N2O fluxes (3–132 μmol m−2 h−1) differed in two mesocosm nitrogen addition experiments, but were similar in a mesocosm with larger N2O fluxes (326–491 μmol m−2 h−1). In a field comparison, Picarro and Los Gatos N2O fluxes (13 ± 2 μmol m−2 h−1) differed in plots receiving low nitrogen loads but were similar in plots with higher nitrogen loads and fluxes roughly double in magnitude. Both the Picarro and Los Gatos analyzers offer efficient and precise alternatives to GC-based methods, but the former uniquely enables simultaneous measurements of three major GHGs in coastal marshes.This study was funded by the USDA National Institute of Food and Agriculture (Hatch project # 229286, grant to Moseman-Valtierra) and a Woods Hole Sea Grant award to Moseman-Valtierra and Tang

    Nuclear Quadrupole Hyperfine Structure in HC14N/H14NC and DC15N/D15NC Isomerization: A Diagnostic Tool for Characterizing Vibrational Localization

    Full text link
    Large-amplitude molecular motions which occur during isomerization can cause significant changes in electronic structure. These variations in electronic properties can be used to identify vibrationally-excited eigenstates which are localized along the potential energy surface. This work demonstrates that nuclear quadrupole hyperfine interactions can be used as a diagnostic marker of progress along the isomerization path in both the HC14N/H14NC and DC15N/D15NC chemical systems. Ab initio calculations at the CCSD(T)/cc-pCVQZ level indicate that the hyperfine interaction is extremely sensitive to the chemical bonding of the quadrupolar 14N nucleus and can therefore be used to determine in which potential well the vibrational wavefunction is localized. A natural bonding orbital analysis along the isomerization path further demonstrates that hyperfine interactions arise from the asphericity of the electron density at the quadrupolar nucleus. Using the CCSD(T) potential surface, the quadrupole coupling constants of highly-excited vibrational states are computed from a one-dimensional internal coordinate path Hamiltonian. The excellent agreement between ab initio calculations and recent measurements demonstrates that nuclear quadrupole hyperfine structure can be used as a diagnostic tool for characterizing localized HCN and HNC vibrational states.Comment: Accepted by Physical Chemistry Chemical Physic

    Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously found that cyclooxygenase 2 (COX-2) was expressed in dying oligodendrocytes at the onset of demyelination in the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of multiple sclerosis (MS) (Carlson et al. J.Neuroimmunology 2006, 149:40). This suggests that COX-2 may contribute to death of oligodendrocytes.</p> <p>Objective</p> <p>The goal of this study was to examine whether COX-2 contributes to excitotoxic death of oligodendrocytes and potentially contributes to demyelination.</p> <p>Methods</p> <p>The potential link between COX-2 and oligodendrocyte death was approached using histopathology of MS lesions to examine whether COX-2 was expressed in dying oligodendrocytes. COX-2 inhibitors were examined for their ability to limit demyelination in the TMEV-IDD model of MS and to limit excitotoxic death of oligodendrocytes <it>in vitro</it>. Genetic manipulation of COX-2 expression was used to determine whether COX-2 contributes to excitotoxic death of oligodendrocytes. A transgenic mouse line was generated that overexpressed COX-2 in oligodendrocytes. Oligodendrocyte cultures derived from these transgenic mice were used to examine whether increased expression of COX-2 enhanced the vulnerability of oligodendrocytes to excitotoxic death. Oligodendrocytes derived from COX-2 knockout mice were evaluated to determine if decreased COX-2 expression promotes a greater resistance to excitotoxic death.</p> <p>Results</p> <p>COX-2 was expressed in dying oligodendrocytes in MS lesions. COX-2 inhibitors limited demyelination in the TMEV-IDD model of MS and protected oligodendrocytes against excitotoxic death <it>in vitro</it>. COX-2 expression was increased in wild-type oligodendrocytes following treatment with Kainic acid (KA). Overexpression of COX-2 in oligodendrocytes increased the sensitivity of oligodendrocytes to KA-induced excitotoxic death eight-fold compared to wild-type. Conversely, oligodendrocytes prepared from COX-2 knockout mice showed a significant decrease in sensitivity to KA induced death.</p> <p>Conclusions</p> <p>COX-2 expression was associated with dying oligodendrocytes in MS lesions and appeared to increase excitotoxic death of oligodendrocytes in culture. An understanding of how COX-2 expression influences oligodendrocyte death leading to demyelination may have important ramifications for future treatments for MS.</p

    To explore the reasons of the surge in sales of picture books during the COVID-19 Pandemic in China

    Get PDF
    During the COVID-19 pandemic, the shutting down of schools and offices, and he enforcement of home quarantine and other measures have led to an increase in digital online reading, which has boosted digital publishing. However, several studies have reported that more “screen exposure” time might lead to higher rates of abnormal psychological problems in preschool children's mood, conduct, attention, peer interaction and other aspects. In China, as a response to this perceived risk and reduce screen exposure among preschool children, families, society and the publishing industry have concentrated promoting printed picture books in these ways: parent-child reading of picture books in the family; storytelling, performance and other promotional activities in public and private libraries; and audible platforms promoted by the publishing industry and We-media
    corecore