25 research outputs found

    An ethnopharmacological review of Hyptis suaveolens (L.) Poit

    Get PDF
    This review aimed to provide a comprehensive overview of ethnobotanical uses, chemical constituents, posology, and toxicology of Hyptis  suaveolens, and to address the significant medicinal benefits in order to promote its application. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A wide range of traditional uses are cited in the literature, ranging from uses for malaria, constipation, stomach problems, renal inflammation to external uses in repelling insects and treating injuries such as lacerations and burnrelated damage to skin and tissues. To date, pharmacological studies have demonstrated the  significant activities of this plant that support uses such as antimicrobial, antidiabetic, antiulcer, and antiinflammatory. Numerous important phytochemicals, including 6 triterpenes, 8 diterpenes and 1 flavonoid have been isolated, identified and reported. The extracts and phytochemicals isolated from the plants show considerable potential for medicinal exploitation and utilization, including antimitotic, antiproliferative, cytotoxic, antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, anti-secretory, hepatoprotective, insecticidal, and acaricidal activities. As a medicinal plant, H. suaveolens is endowed with immense exploitation and utilization value and is widely used worldwide Therefore, further studies to fully elucidate its medicinal potential are warranted. Keywords: Hyptis suaveolens (L.) Poit, Ulcer Antimicrobial Inflammation, Diterpenes, Traditional medicine, Ethnopharmacology, Lamiacea

    Expression, Purification and Activity Analysis of Proteus vulgaris Phage Lys66

    Get PDF
    Objective: The gene cloning, protein expression, purification and activity analysis of a new type of Proteus vulgaris bacteriophage lyase Lys66 were performed. Methods: The whole gene sequence of bacteriophage was compared in the Genbank database. The gene sequence of lysase was excavated and cloned. The protein was expressed in Escherichia coli and was further purified to explore its antibacterial effect. Results: A gene sequence with high similarity to lyase was discovered through comparison, with a size of 393 bp. By using ExPAsy Bioinformatics Resource Portal, the lyase was predicted that its molecular weight was 15.20 kDa, the isoelectric point was 9.40, and it was composed of 130 amino acids. The whole optimized synthetic gene was constructed onto vector pET-32α to obtain the recombinant plasmid pET-32α-Lys66. The recombinant plasmid was transferred into competent cells of E. coli BL21 (DE3) to induce its expression. After purification and validation, 1.86 mg/mL Lys66 protein was obtained. The diameter of the bacteriostatic ring of Lys66 lyase on the plate was 19.30 mm. Thirteen Gram-negative bacteria out of 15 tested strains treated with chloroform showed lytic activity, with a wide host spectrum. When Lys66 (1.89 mg/mL) was used in combination with ethylene diamine tetraacetic acid (1 mmol/L), the OD600 nm decreased by 0.61 after 2 h, indicating a good antibacterial effect. Conclusion: The recombinant lysase Lys66 expressed in this study had good antibacterial effects and could be used as a potential antibacterial agent

    Lipidomics for Determining Giant Panda Responses in Serum and Feces Following Exposure to Different Amount of Bamboo Shoot Consumption: A First Step towards Lipidomic Atlas of Bamboo, Giant Panda Serum and Feces by Means of GC-MS and UHPLC-HRMS/MS

    Get PDF
    Lipidic metabolites play essential roles in host physiological health and growth performance, serving as the major structural and signaling components of membranes, energy storage molecules, and steroid hormones. Bamboo, as wild giant pandas' exclusive diet, is the main determinant of giant pandas' lipidome, both as a direct source and through microbiota activity. Interestingly, the consumption of bamboo has attracted little attention from a lipidomic perspective. In the current study, we outline the lipidomic atlas of different parts of bamboo. By gas chromatography-mass spectrometry (GC-MS), we have been able to obtain the absolute quantification of 35 fatty acids pertaining to short chain fatty acids (8), medium chain fatty acids (6), long chain fatty acids (17), and very long chain fatty acids (4), while liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS) allowed us to obtain the relative quantification of another 1638 lipids. Among the fatty acids quantified in absolute terms, eight showed significantly distinct concentrations among different bamboo parts. Subsequently, we investigated how the giant panda's serum and fecal lipidome adapt to the most important annual change in their diet, represented by the consumption of high amounts of bamboo shoots, typical of spring, the weight-gaining season. Five fatty acids were significantly altered in feces and two in serum, respectively, due to the different levels of bamboo shoot consumption. Furthermore, significant differences of the main bacteria strains were observed in feces between the two groups at the genus level, pertaining to Streptococcus, Leuconostoc, and Vagococcus. Correlations between giant panda fecal microbiome and lipidome were evaluated by Pearson correlation analysis. These findings suggest that a balanced diet, important for the overall lipidomic function and giant panda health, could be reached even in this remarkable case of a single food-based diet, by administering to the giant panda's combinations of different parts of bamboo, with specific lipidome profiles

    Characterization of Flavor Profile of "Nanx Wudl" Sour Meat Fermented from Goose and Pork Using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) Combined with Electronic Nose and Tongue

    Get PDF
    Sour meat is a highly appreciated traditional fermented product, mainly from the Guizhou, Yunnan, and Hunan provinces. The flavor profiles of sour meat from goose and pork were evaluated using gas chromatography-ion mobility spectrometry (GC-IMS) combined with an electronic nose (E-nose) and tongue (E-tongue). A total of 94 volatile compounds were characterized in fermented sour meat from both pork and goose using GC-IMS. A data-mining protocol based on univariate and multivariate analyses revealed that the source of the raw meat plays a crucial role in the formation of flavor compounds during the fermentation process. In detail, sour meat from pork contained higher levels of hexyl acetate, sotolon, heptyl acetate, butyl propanoate, hexanal, and 2-acetylpyrrole than sour goose meat. In parallel, sour meat from goose showed higher levels of 4-methyl-3-penten-2-one, n-butyl lactate, 2-butanol, (E)-2-nonenal, and decalin than sour pork. In terms of the odor and taste response values obtained by the E-nose and E-tongue, a robust principal component model (RPCA) could effectively differentiate sour meat from the two sources. The present work could provide references to investigate the flavor profiles of traditional sour meat products fermented from different raw meats and offer opportunities for a rapid identification method based on flavor profiles

    Effects of S. cerevisiae strains on the sensory characteristics and flavor profile of kiwi wine based on E-tongue, GC-IMS and 1H-NMR

    Get PDF
    The fermentation of kiwifruit into kiwi wine (KW) can represent a strategy to reduce the economic losses linked to fruits imperfections, spoilage, over production and seasonality. In the study, Pujiang kiwifruit, a China National Geographical Indication Product, was used as raw material to produce KW fermented by four commercial S. cerevisiae strains, namely Drop Acid Yeast, DV10, SY and RW. The sensory characteristics and flavor profile of KW were assessed by means of sensory evaluation, E-tongue, GC-IMS and 1H-NMR. KW fermented by RW strain obtained the higher sensory evaluation score. E-tongue could clearly distinguish the taste differences of KW fermented by distinct S. cerevisiae strains. A total of 128 molecules were characterized by GC-IMS and 1H-NMR, indicating that the combinations of multiple technologies could provide a comprehensive flavor profile of KW. The main flavor compounds in KW pertained to the classes of esters and alcohols. Several pathways were found to be differently altered by the fermentation with the different yeast strains, namely butanoate metabolism, glycerolipid metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, arginine and proline metabolism. The present study will facilitate screening suitable S. cerevisiae strains for KW production and provide a theoretical basis for large-scale production of KW

    Comparison of aroma and taste profiles of kiwi wine fermented with/without peel by combining intelligent sensory, gas chromatography-mass spectrometry, and proton nuclear magnetic resonance

    Get PDF
    Kiwi wine (KW) is tipically made by fermenting juice from peeled kiwifruit, resulting in the disposal of peel and pomace as by-products. However, the peel contains various beneficial compounds, like phenols and flavonoids. Since the peel is edible and rich in these compounds, incorporating it into the fermentation process of KW presents a potential solution to minimize by-product waste. This study compared the aroma and taste profiles of KW from peeled (PKW) and unpeeled (UKW) kiwifruits by combining intelligent sensory technology, GC-MS, and 1H-NMR. Focusing on aroma profiles, 75 volatile organic compounds (VOCs) were identified in KW fermented with peel, and 73 VOCs in KW without peel, with 62 VOCs common to both. Among these compounds, rose oxide, D-citronellol, and bornylene were more abundant in UKW, while hexyl acetate, isoamyl acetate, and 2,4,5-trichlorobenzene were significantly higher in PKW. For taste profiles, E-tongue analysis revealed differences in the taste profiles of KW from the two sources. A total of 74 molecules were characterized using 1H-NMR. UKW exhibited significantly higher levels of tartrate, galactarate, N-acetylserotonin, 4-hydroxy-3-methoxymandelate, fumarate, and N-acetylglycine, along with a significantly lower level of oxypurinol compared to PKW. This study seeks to develop the theoretical understanding of the fermentation of kiwifruit with peel in sight of the utilization of the whole fruit for KW production, to increase the economic value of kiwifruit production

    An Untargeted Metabolomics Investigation of Milk from Dairy Cows with Clinical Mastitis by 1H-NMR

    No full text
    Mastitis is one of the diseases with the highest incidence in dairy cows, causing huge economic losses to the dairy industry all over the world. The aim of the study was to characterize mastitic milk metabolome through untargeted nuclear magnetic resonance spectroscopy (1H-NMR). Taking advantage of the high reproducibility of 1H-NMR, we had the opportunity to provide quantitative information for all the metabolites identified. Fifty-four molecules were characterized, sorted mainly into the chemical groups, namely amino acids, peptides and analogues, carbohydrates and derivates, organic acids and derivates, nucleosides, nucleotides and analogues. Combined with serum metabolomic investigations, several pathways were addressed to explain the mechanisms of milk metabolome variation affected by clinical mastitis, such as tricarboxylic acid cycle (TCA cycle) and phenylalanine, tyrosine and tryptophan biosynthesis. These results provide a further understanding of milk metabolome altered by clinical mastitis, which can be used as a reference for the further milk metabolome investigations

    Comparative Effects of Food Preservatives on the Production of Staphylococcal Enterotoxin I from Staphylococcus aureus Isolate

    No full text
    Staphylococcal enterotoxin I (SEI) is associated with staphylococcal food poisoning, but little is known about different food preservatives on the production of SEI. In this study, the effect of different food preservatives (sodium nitrite, polylysine, chitosan, and tea catechin) on the bacteria growth, sei gene expression, and extracellular SEI production of Staphylococcus aureus isolate H4 was detected in tryptone soya broth (TSB) culture. Our results showed that all of these preservatives depressed S. aureus H4 growth and the order of inhibitory effect was 0.8 g/L tea catechin > 6 g/L chitosan > 0.25 g/L polylysine > 0.4 g/L tea catechin > 0.15 g/L sodium nitrite. Furthermore, 0.25 g/L polylysine or 0.15 g/L sodium nitrite did not significantly alter sei gene transcription, while 6 g/L chitosan obviously increased the relative mRNA level of sei gene expression. 0.4 g/L tea catechin remarkably inhibited sei gene transcription. In addition, 0.15 g/L sodium nitrite and 6 g/L chitosan significantly enhanced SEI secretion. 0.25 g/L polylysine, especially 0.4 g/L tea catechin, sharply inhibited the level of SEI secretion. The results indicated that tea catechin not only suppressed Staphylococcus aureus growth, but also inhibited SEI production and secretion, suggesting that tea catechin may be better than sodium nitrite, polylysine, or chitosan for keeping the food from the contamination of SEI. These investigations would be useful for food industry to provide safer food products due to S. aureus enterotoxins-related control strategy
    corecore