91 research outputs found

    Grain Boundary Serration in Nickel Alloy Inconel 600: Quantification and Mechanisms

    Get PDF
    The serration of grain boundaries in Inconel 600 caused by heat treatment is studied systematically. A new method based on Fourier transforms is used to analyse the multiple wave-like character of the serrated grain boundaries. A new metric -- the serration index -- is devised and utilised to quantify the degree of serration and more generally to distinguish objectively between serrated and non-serrated boundaries. By considering the variation of the serration index with processing parameters, a causal relationship between degree of serration and solution treatment/cooling rate is elucidated. Processing maps for the degree of serration are presented. Two distinct formation mechanisms arise which rely upon grain boundary interaction with carbides: (i) Zener-type dragging which hinders grain boundary migration and (ii) a faceted carbide growth-induced serration

    Tetraodon nigroviridis as a nonlethal model of infectious spleen and kidney necrosis virus (ISKNV) infection

    Get PDF
    AbstractInfectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus, family Iridoviridae. We have previously established a high mortality ISKNV infection model of zebrafish (Danio rerio). In this study, a nonlethal Tetraodon nigroviridis model of ISKNV infection was established. ISKNV infection did not cause lethal disease in Tetraodon but could infect almost all the organs of this species. Electron microscopy showed ISKNV particles were present in infected tissues. Immunofluorescence and quantitative real-time PCR analysis showed that nearly all the virions and infected cells were cleared at 14d postinfection. The expression profiles of interferon-γ and tumor necrosis factor-α gene in response to ISKNV infection were significantly different in Tetraodon and zebrafish. The establishment of the nonlethal Tetraodon model of ISKNV infection can offer a valuable tool complementary to the zebrafish infection model for studying megalocytivirus disease, fish immune systems, and viral tropism

    Estuarine plastisphere as an overlooked source of N2O production

    Get PDF
    “Plastisphere”, microbial communities colonizing plastic debris, has sparked global concern for marine ecosystems. Microbiome inhabiting this novel human-made niche has been increasingly characterized; however, whether the plastisphere holds crucial roles in biogeochemical cycling remains largely unknown. Here we evaluate the potential of plastisphere in biotic and abiotic denitrification and nitrous oxide (N2O) production in estuaries. Biofilm formation provides anoxic conditions favoring denitrifiers. Comparing with surrounding bulk water, plastisphere exhibits a higher denitrifying activity and N2O production, suggesting an overlooked N2O source. Regardless of plastisphere and bulk water, bacterial and fungal denitrifications are the main regulators for N2O production instead of chemodenitrification. However, the contributions of bacteria and fungi in the plastisphere are different from those in bulk water, indicating a distinct N2O production pattern in the plastisphere. These findings pinpoint plastisphere as a N2O source, and provide insights into roles of the new biotope in biogeochemical cycling in the Anthropocene

    Achieving ultra‐high rate planar and dendrite‐free zinc electroplating for aqueous zinc battery anodes

    Get PDF
    Despite being one of the most promising candidates for grid-level energy storage, practical aqueous zinc batteries are limited by dendrite formation, which leads to significantly compromised safety and cycling performance. In this study, by using single-crystal Zn-metal anodes, reversible electrodeposition of planar Zn with a high capacity of 8 mAh cm−2 can be achieved at an unprecedentedly high current density of 200 mA cm−2. This dendrite-free electrode is well maintained even after prolonged cycling (>1200 cycles at 50 mA cm−2). Such excellent electrochemical performance is due to single-crystal Zn suppressing the major sources of defect generation during electroplating and heavily favoring planar deposition morphologies. As so few defect sites form, including those that would normally be found along grain boundaries or to accommodate lattice mismatch, there is little opportunity for dendritic structures to nucleate, even under extreme plating rates. This scarcity of defects is in part due to perfect atomic-stitching between merging Zn islands, ensuring no defective shallow-angle grain boundaries are formed and thus removing a significant source of non-planar Zn nucleation. It is demonstrated that an ideal high-rate Zn anode should offer perfect lattice matching as this facilitates planar epitaxial Zn growth and minimizes the formation of any defective regions

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    1 Understanding the Flooding in Low-Duty-Cycle Wireless Sensor Networks

    No full text
    Abstract—In low-duty-cycle networks, sensors stay dormant most of time to save their energy and wake up based on their needs. Such a technique, while prolonging the network lifetime, sets excessive challenges for efficient flooding within the network. Tailored for obtaining short delay in low-duty-cycle networks, recently proposed flooding protocols have achieved some initial success. Many fundamental problems of flooding in low-dutycycle networks, however, are still not well understood. In this paper, we thoroughly investigate how the flooding behaviors are fundamentally affected from theory to practice in a lowduty-cycle sensor network. We study how practical factors like duty cycle length and link loss affect the flooding delay. We mathematically quantify the performance deterioration caused by those factors and present initial learning in achieving efficient flooding against them. Our theoretical analysis brings us not only an in-depth understanding of several fundamental trade-offs in low-duty-cycle sensor networks, but also insights on the design of flooding protocols that can approach excellent performance. Keywords-Flooding, Low-duty-cycle, wireless sensor networks. I
    corecore