15 research outputs found

    VIRT: Improving Representation-based Models for Text Matching through Virtual Interaction

    Full text link
    With the booming of pre-trained transformers, remarkable progress has been made on textual pair modeling to support relevant natural language applications. Two lines of approaches are developed for text matching: interaction-based models performing full interactions over the textual pair, and representation-based models encoding the pair independently with siamese encoders. The former achieves compelling performance due to its deep interaction modeling ability, yet with a sacrifice in inference latency. The latter is efficient and widely adopted for practical use, however, suffers from severe performance degradation due to the lack of interactions. Though some prior works attempt to integrate interactive knowledge into representation-based models, considering the computational cost, they only perform late interaction or knowledge transferring at the top layers. Interactive information in the lower layers is still missing, which limits the performance of representation-based solutions. To remedy this, we propose a novel \textit{Virtual} InteRacTion mechanism, termed as VIRT, to enable full and deep interaction modeling in representation-based models without \textit{actual} inference computations. Concretely, VIRT asks representation-based encoders to conduct virtual interactions to mimic the behaviors as interaction-based models do. In addition, the knowledge distilled from interaction-based encoders is taken as supervised signals to promise the effectiveness of virtual interactions. Since virtual interactions only happen at the training stage, VIRT would not increase the inference cost. Furthermore, we design a VIRT-adapted late interaction strategy to fully utilize the learned virtual interactive knowledge

    A Bidirectional Multi-paragraph Reading Model for Zero-shot Entity Linking

    No full text
    Recently, a zero-shot entity linking task is introduced to challenge the generalization ability of entity linking models. In this task, mentions must be linked to unseen entities and only the textual information is available. In order to make full use of the documents, previous work has proposed a BERT-based model which can only take fixed length of text as input. However, the key information for entity linking may exist in nearly everywhere of the documents thus the proposed model cannot capture them all. To leverage more textual information and enhance text understanding capability, we propose a bidirectional multi-paragraph reading model for the zero-shot entity linking task. Firstly, the model treats the mention context as a query and matches it with multiple paragraphs of the entity description documents. Then, the mention-aware entity representation obtained from the first step is used as a query to match multiple paragraphs in the document containing the mention through an entity-mention attention mechanism. In particular, a new pre-training strategy is employed to strengthen the representative ability. Experimental results show that our bidirectional model can capture long-range context dependencies and outperform the baseline model by 3-4% in terms of accuracy

    Infectious shock after liposuction

    No full text
    Abstract Background Liposuction has become one of the most popular cosmetic surgeries in China. However, few studies have discussed infectious shock caused by C. perfringens as one of the causes of death after liposuction. Case presentation A 24-year-old woman was brought to the emergency department (ED) of Guangzhou Chinese Overseas Hospital for treatment. The patient had undergone liposuction in her bilateral lower limbs two days prior. At the ED, the patient was unconscious, and had bilateral equal-sized (diameter, 6 mm) round pupils, no light reflex, a blood pressure (BP) of 71/33 mmHg, a heart rate of 133 bpm, and an SpO2 of 70%. She had bilateral limb swelling, extensive ecchymoses in her lower abdomen and bilateral thighs, local crepitus, blisters, weak pulses on her femoral artery and dorsalis pedis, high skin tension, and hemoglobin of 32 g/L. The patient was diagnosed with Clostridium perfringens infection, and she underwent debridement surgery and supportive treatment. But the patient’s BP could not improve. At 8:28 pm on the day of admission, the patient was declared clinically dead after the electrocardiograph showed a horizontal line and spontaneous respiration ceased. Conclusions Failure to meet surgical disinfection and environmental standards may be the cause of infection of C. perfringens through wounds. Therefore, it is necessary to strengthen the environmental disinfection of the operating room, and standardize the sterile conditions of the operation staff and patients before and during operation. Liposuction surgery necrotizing fasciitis is a rare but fatal complications, especially if diagnosis delay, therefore it is critical for early diagnosis and treatment of gas gangrene

    Numerical Investigation on Unsteady Shock Wave/Vortex/Turbulent Boundary Layer Interactions of a Hypersonic Vehicle during Its Shroud Separation

    No full text
    Hypersonic vehicles are drawing more and more attention now and for the near future, especially in the low-altitudes near space, from 20 km to 45 km. The reliable separation of the protecting shroud from the hypersonic vehicle is a prerequisite and critical issue for the success of the entire flight mission. The unsteady multi-body separation characteristics and flow characteristics of hypersonic shroud separation at Mach 7.0 are investigated based on numerical simulation in this paper. The improved delayed detached eddy simulation (IDDES) method, dynamic hybrid overset mesh method, and HLLE++ numerical scheme are used to ensure numerical accuracy. Numerical results show that there are four types of vortexes and three types of shock waves inside the shrouds during the separation process, which generate complex shock wave/vortex/boundary layer interactions. Further, an unsteady process of the expansion-transfer-dissipation of an A-type vortex is found, which is the result of strong shock/vortex/boundary layer interactions. The adverse pressure gradient is the root cause driving the generation and transfer of the A-type vortex during the shroud separation. Furthermore, the transfer process of the A-type vortex only lasts for 5.52 ms but causes a large disturbance to the aerodynamic force of the shroud. The results of this paper could provide a reference for the design of near-space hypersonic vehicles

    Investigating potential biomarkers of acute pancreatitis in patients with a BMI>30 using Mendelian randomization and transcriptomic analysis

    No full text
    Abstract Background Acute pancreatitis (AP) has become a significant global health concern, and a high body mass index (BMI) has been identified as a key risk factor exacerbating this condition. Within this context, lipid metabolism assumes a critical role. The complex relationship between elevated BMI and AP, mediated by lipid metabolism, markedly increases the risk of complications and mortality. This study aimed to accurately define the correlation between BMI and AP, incorporating a comprehensive analysis of the interactions between individuals with high BMI and AP. Methods Mendelian randomization (MR) analysis was first applied to determine the causal relationship between BMI and the risk of AP. Subsequently, three microarray datasets were obtained from the GEO database. This was followed by an analysis of differentially expressed genes and the application of weighted gene coexpression network analysis (WGCNA) to identify key modular genes associated with AP and elevated BMI. Functional enrichment analysis was then performed to shed light on disease pathogenesis. To identify the most informative genes, machine learning algorithms, including Random Forest (RF), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), were employed. Subsequent analysis focused on the colocalization of the Quantitative Trait Loci (eQTL) data associated with the selected genes and Genome-Wide Association Studies (GWAS) data related to the disease. Preliminary verification of gene expression trends was conducted using external GEO datasets. Ultimately, the diagnostic potential of these genes was further confirmed through the development of an AP model in mice with a high BMI. Results A total of 21 intersecting genes related to BMI>30, AP, and lipid metabolism were identified from the datasets. These genes were primarily enriched in pathways related to cytosolic DNA sensing, cytokine‒cytokine receptor interactions, and various immune and inflammatory responses. Next, three machine learning techniques were utilized to identify HADH as the most prevalent diagnostic gene. Colocalization analysis revealed that HADH significantly influenced the risk factors associated with BMI and AP. Furthermore, the trend in HADH expression within the external validation dataset aligned with the trend in the experimental data, thus providing a preliminary validation of the experimental findings.The changes in its expression were further validated using external datasets and quantitative real-time polymerase chain reaction (qPCR). Conclusion This study systematically identified HADH as a potential lipid metabolism-grounded biomarker for AP in patients with a BMI>30

    Synthesis and Fluorescence Properties of 5,7-Diphenylquinoline and 2,5,7-Triphenylquinoline Derived from m-Terphenylamine

    No full text
    Synthesis of 5,7-phenylquinoline from the Skraup reaction of m-terphenyl-amine and glycerol in the presence of acid is reported. Further reaction of 5,7-diphenyl-quinoline with phenyl lithium prepared in situ led to the formation of 2,5,7-triphenyl-quinoline. All of the products and their intermediates were characterized and the UV-Vis and photo-luminescence (PL) spectra of m-terphenylamine, 5,7-diphenylquinoline and 2,5,7-triphenylquinoline are also reported
    corecore