34 research outputs found

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Cross-Functional Test to Explore the Determination Method of Meso-Parameters in the Discrete Element Model of Asphalt Mixtures

    No full text
    In order to obtain more accurate parameters required for the simulation of asphalt mixtures in the discrete element method (DEM), this study carried out a series of cross-functional asphalt mixture experiments to obtain the DEM simulation meso-parameters. By comparing the results of simulation and actual experiments, a method to obtain the meso-parameters of the DEM simulation was proposed. In this method, the numerical aggregate profile was obtained by X-ray CT scanning and the 3D aggregate model was reconstructed in MIMICS. The linear contact parameters of the aggregate and the Burgers model parameters of the asphalt mastic were obtained by nanoindentation technology. The parameters of the parallel bonding model between the aggregate and mastic were determined by the macroscopic tensile adhesion test and shear bond test. The results showed that the meso-parameters obtained by the macroscopic experiment provide a basis for the calibration of DEM parameters to a certain extent. The trends in simulation results are similar to the macro test results. Therefore, the newly proposed method is feasible

    Site-Specific Quantification of Surface N‑Glycoproteins in Statin-Treated Liver Cells

    No full text
    The frequent modification of cell-surface proteins by N-linked glycans is known to be correlated with many biological processes. Aberrant glycosylation on surface proteins is associated with different cellular statuses and disease progression. However, it is extraordinarily challenging to comprehensively and site-specifically analyze glycoproteins located only on the cell surface. Currently mass spectrometry (MS)-based proteomics provides the possibility to analyze the N-glycoproteome, but effective separation and enrichment methods are required for the analysis of surface glycoproteins prior to MS measurement. The introduction of bio-orthogonal groups into proteins accelerates research in the robust visualization, identification, and quantification of proteins. Here we have comprehensively evaluated different sugar analogs in the analysis of cell-surface N-glycoproteins by combining copper-free click chemistry and MS-based proteomics. Comparison of three sugar analogs, N-azidoacetylgalactosamine (GalNAz), N-azidoacetylglucosamine (GlcNAz), and N-azidoacetylmannosamine (ManNAz), showed that metabolic labeling with GalNAz resulted in the greatest number of glycoproteins and glycosylation sites in biological duplicate experiments. GalNAz was then employed for the quantification experiment in statin-treated HepG2 liver cells, and 280 unique N-glycosylated sites were quantified from 168 surface proteins. The quantification results demonstrated that many glycosylation sites on surface proteins were down-regulated in statin-treated cells compared to untreated cells because statin prevents the synthesis of dolichol, which is essential for the formation of dolichol-linked precursor oligosaccharides. Several glycosylation sites in proteins that participate in the Alzheimer’s disease pathway were down-regulated. This method can be extensively applied for the global analysis of the cell-surface N-glycoproteome

    Design of and Experiment on Open-and-Close Seedling Pick-Up Manipulator with Four Fingers

    No full text
    With the aim to solve the problems of plug seedlings being damaged and the low success rate in the process of picking up seedlings, an open-and-close seedling picking manipulator with four fingers was designed. The clamping scheme with quadrangle inserting while clamping was designed in order to reduce the disturbance and injury of pot matrix soil. The working principle of the manipulator was expounded, and a mathematical model of the mechanism movement was established. The force transmission of the mechanism and force between finger and pot was analyzed, and the constraint condition of optimum force transmission efficiency and low damage when picking up seedlings was analyzed. Based on theoretical calculation and analysis, a set of optimal parameters and the trace curve of the finger end point were obtained. Based on the above theoretical calculation, kinematics parameters were analyzed and verified by Adams software. IF and STEP velocity functions were used to define the motion form of the driving source to simulate manipulator opening away from the seedling, straight down near the seedling, inserting into pot while clamping, and lift-off after the insertion to depth 45 mm. The simulation result proved the end point trajectory obtained by the motion simulation was basically consistent with that obtained by theoretical calculation. Velocity and acceleration curves of each mechanism component were obtained, and the result proved the velocity and acceleration of the tip of the finger changed greatly, and the inertia impact was large; the inertia force helped to clamp the pot. The manipulator was installed at the end of the transplanting platform. A plug seedling of &ldquo;Zhongnong Luheng line pepper 363&rdquo; was taken as the object, and the pot moisture content, seedling pick-up frequency, and finger material were used as experimental factors for the seedling pick-up test. The results showed that the above three factors had significant effects on the rate of pot damage and the rate of successful seedling pick-up. The optimum level was that when the moisture content was 45%, the frequency of picking seedlings was 20 plants&middot;min&minus;1, and the clamping finger material was carbon steel; the damage rate of the pot body was 1.98%, and the success rate of picking seedlings was 98%. This manipulator has the advantages of stable seedling picking and a low damage rate and can be used for transplanting plug seedlings of plants such as pepper and tomato

    A Case Report of Hemifacial Spasm Caused by Vestibular Schwannoma and Literature Review

    No full text
    Background: Most cases of hemifacial spasm result from mechanical compression at the root exit zone of the facial nerve by vascular loops, and only a few cases are caused by vestibular schwannoma. Case presentation: We report a case of symptomatic hemifacial spasm induced by a small vestibular schwannoma that was totally resected. A 64-year-old man was admitted to our department with a 14-month history of symptomatic right-sided hemifacial spasm. During the process of microvascular decompression, no definite vessel was found to compress the facial nerve. By further exploration of regions other than root exit zone, a small vestibular schwannoma compressing the internal auditory canal portion of facial nerve from the ventral side was discovered. Resection of the tumor was then conducted. The symptoms of hemifacial spasm disappeared immediately after surgery. Conclusions: We should be aware that magnetic resonance imaging is not always precise and perhaps misses some miniature lesions due to present image technique limitations. A small vestibular schwannoma might be the reason for HFS, although preoperative magnetic resonance tomography angiography showed possible vascular compression at the facial nerve root. More importantly, a full-length exploration of the facial nerve is in urgent need to find potential compression while performing microvascular decompression for HFS patients

    Protic ionic liquid modified electrocatalyst enables robust anode under cell reversal condition

    No full text
    Pt/C has been commercially used as anode electrocatalyst for fuel cells but generally exhibits limited durability under conditions of fuel starvation and subsequent cell reversal. Herein we report an improved scaffold concept to simultaneously stabilize the catalyst against particle growth and reduce the adverse effects of cell reversal by modifying Pt/C with suitable protic ionic liquids (PILs). The modified Pt/C catalysts show enhanced cell reversal tolerance because of their high activity towards oxygen evolution reaction (OER), up to 300 mV lower overpotential compared to the unmodified Pt/C. Moreover, the PIL modified catalysts show better resistance to the loss of electrochemical surface area (ECSA) under simulated cell reversal conditions. The results indicate that modification of Pt/C catalysts with PILs is a promising strategy to enhance the stability and durability of electrocatalysts in fuel cell applications with the risk of frequent fuel starvation events, such as automotive fuel cells.status: publishe
    corecore