337 research outputs found

    Phase diagrams of period-4 spin chains consisting of three kinds of spins

    Full text link
    We study a period-4 antiferromagnetic mixed quantum spin chain consisting of three kinds of spins. When the ground state is singlet, the spin magnitudes in a unit cell are arrayed as (s-t, s, s+t, s) with integer or half-odd integer s and t (0 <= t < s). The spin Hamiltonian is mapped onto a nonlinear sigma model (NLSM) in a previously developed method. The resultant NLSM includes only two independent parameters originating from four exchange constants for fixed s and t. The topological angle in the NLSM determines the gapless phase boundaries between disordered phases in the parameter space. The phase diagrams for various s and t shows rich structures. We systematically explain the phases in the singlet-cluster-solid picture.Comment: 8 pages (16 figures included

    MNK1 and MNK2 mediate adverse effects of high-fat feeding in distinct ways

    Get PDF
    The MAP kinase-interacting kinases (MNK1 and MNK2) are non-essential enzymes which are activated by MAP kinases. They are implicated in controlling protein synthesis. Here we show that mice in which the expression of either MNK1 or MNK2 has been knocked out (KO) are protected against adverse effects of high-fat feeding, and in distinct ways. High-fat diet (HFD)-fed MNK2-KO show less weight gain than wild-type animals, and improved glucose tolerance, better insulin sensitivity and markedly diminished adipose tissue inflammation. This suggests MNK2 plays a role in adipogenesis and/or lipogenesis and in macrophage biology. MNK1-KO/HFD mice show better glucose tolerance and insulin sensitivity, but gain weight and show similar adipose inflammation to WT animals. These data suggest MNK1 participates in mediating HFD-induced insulin resistance. Our findings reveal distinct roles for the MNKs in a novel area of disease biology, metabolic dysfunction, and suggests they are potential new targets for managing metabolic disease

    Collaborative Vehicular Edge Computing Networks: Architecture Design and Research Challenges

    Get PDF
    The emergence of augmented reality (AR), autonomous driving and other new applications have greatly enriched the functionality of the vehicular networks. However, these applications usually require complex calculations and large amounts of storage, which puts tremendous pressure on traditional vehicular networks. Mobile edge computing (MEC) is proposed as a prospective technique to extend computing and storage resources to the edge of the network. Combined with MEC, the computing and storage capabilities of the vehicular network can be further enhanced. Therefore, in this paper, we explore the novel collaborative vehicular edge computing network (CVECN) architecture. We first review the work related to MEC and vehicular networks. Then we discuss the design principles of CVECN. Based on the principles, we present the detailed CVECN architecture, and introduce the corresponding functional modules, communication process, as well as the installation and deployment ideas. Furthermore, the promising technical challenges, including collaborative coalition formation, collaborative task offloading and mobility management, are presented. And some potential research issues for future research are highlighted. Finally, simulation results are verified that the proposed CVECN can significantly improve network performance

    Clinical and Genetic Association of Serum Ceruloplasmin with Cardiovascular Risk

    Get PDF
    Objective—Ceruloplasmin (Cp) is an acute-phase reactant that is increased in inflammatory diseases and in acute coronary syndromes. Cp has recently been shown to possess nitric oxide (NO) oxidase catalytic activity, but its impact on long-term cardiovascular outcomes in stable cardiac patients has not been explored. Methods and Results—We examined serum Cp levels and their relationship with incident major adverse cardiovascular events (MACE; death, myocardial infarction [MI], stroke) over 3-year follow-up in 4177 patients undergoing elective coronary angiography. We also carried out a genome-wide association study to identify the genetic determinants of serum Cp levels and evaluate their relationship to prevalent and incident cardiovascular risk. In our cohort (age 63±11 years, 66% male, 32% history of MI, 31% diabetes mellitus), mean Cp level was 24±6 mg/dL. Serum Cp level was associated with greater risk of MI at 3 years (hazard ratio [quartile 4 versus 1] 2.35, 95% confidence interval [CI] 1.79–3.09, P\u3c0.001). After adjustment for traditional risk factors, high-sensitivity C-reactive protein, and creatinine clearance, Cp remained independently predictive of MACE (hazard ratio 1.55, 95% CI 1.10–2.17, P=0.012). A 2-stage genome-wide association study identified a locus on chromosome 3 over the CP gene that was significantly associated with Cp levels (lead single-nucleotide polymorphism rs13072552; P=1.90×10−11). However, this variant, which leads to modestly increased serum Cp levels (≈1.5–2 mg/dL per minor allele copy), was not associated with coronary artery disease or future risk of MACE. Conclusion—In stable cardiac patients, serum Cp provides independent risk prediction of long-term adverse cardiac events. Genetic variants at the CP locus that modestly affect serum Cp levels are not associated with prevalent or incident risk of coronary artery disease in this study population

    Clinical and Genetic Association of Serum Ceruloplasmin with Cardiovascular Risk

    Get PDF
    Objective—Ceruloplasmin (Cp) is an acute-phase reactant that is increased in inflammatory diseases and in acute coronary syndromes. Cp has recently been shown to possess nitric oxide (NO) oxidase catalytic activity, but its impact on long-term cardiovascular outcomes in stable cardiac patients has not been explored. Methods and Results—We examined serum Cp levels and their relationship with incident major adverse cardiovascular events (MACE; death, myocardial infarction [MI], stroke) over 3-year follow-up in 4177 patients undergoing elective coronary angiography. We also carried out a genome-wide association study to identify the genetic determinants of serum Cp levels and evaluate their relationship to prevalent and incident cardiovascular risk. In our cohort (age 63±11 years, 66% male, 32% history of MI, 31% diabetes mellitus), mean Cp level was 24±6 mg/dL. Serum Cp level was associated with greater risk of MI at 3 years (hazard ratio [quartile 4 versus 1] 2.35, 95% confidence interval [CI] 1.79–3.09, P\u3c0.001). After adjustment for traditional risk factors, high-sensitivity C-reactive protein, and creatinine clearance, Cp remained independently predictive of MACE (hazard ratio 1.55, 95% CI 1.10–2.17, P=0.012). A 2-stage genome-wide association study identified a locus on chromosome 3 over the CP gene that was significantly associated with Cp levels (lead single-nucleotide polymorphism rs13072552; P=1.90×10−11). However, this variant, which leads to modestly increased serum Cp levels (≈1.5–2 mg/dL per minor allele copy), was not associated with coronary artery disease or future risk of MACE. Conclusion—In stable cardiac patients, serum Cp provides independent risk prediction of long-term adverse cardiac events. Genetic variants at the CP locus that modestly affect serum Cp levels are not associated with prevalent or incident risk of coronary artery disease in this study population

    Clinical and Genetic Association of Serum Paraoxonase and Arylesterase Activities With Cardiovascular Risk

    Get PDF
    Objective—Diminished serum paraoxonase and arylesterase activities (measures of paraoxonase-1 [PON-1] function) in humans have been linked to heightened systemic oxidative stress and atherosclerosis risk. The clinical prognostic use of measuring distinct PON-1 activities has not been established, and the genetic determinants of PON-1 activities are not known. Methods and Results—We established analytically robust high-throughput assays for serum paraoxonase and arylesterase activities and measured these in 3668 stable subjects undergoing elective coronary angiography without acute coronary syndrome and were prospectively followed for major adverse cardiovascular events (MACE= death, myocardial infarction, stroke) over 3 years. Low serum arylesterase and paraoxonase activities were both associated with increased risk for MACE, with arylesterase activity showing greatest prognostic value (quartile 4 versus quartile 1; hazard ratio 2.63; 95% CI, 1.97–3.50; P\u3c0.01). Arylesterase remained significant after adjusting for traditional risk factors, C-reactive protein, and creatinine clearance (hazard ratio, 2.20; 95% CI, 1.60–3.02; P\u3c0.01), predicted future development of MACE in both primary and secondary prevention populations, and reclassified risk categories incrementally to traditional clinical variables. A genome-wide association study identified distinct single nucleotide polymorphisms within the PON-1 gene that were highly significantly associated with serum paraoxonase (1.18×10-303) or arylesterase (4.99×10−116) activity but these variants were not associated with either 3-year MACE risk in an angiographic cohort (n=2136) or history of either coronary artery disease or myocardial infarction in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis consortium (n≈80 000 subjects). Conclusion—Diminished serum arylesterase activity, but not the genetic determinants of PON-1 functional measures, provides incremental prognostic value and clinical reclassification of stable subjects at risk of developing MACE

    Clinical and Genetic Association of Serum Paraoxonase and Arylesterase Activities With Cardiovascular Risk

    Get PDF
    Objective—Diminished serum paraoxonase and arylesterase activities (measures of paraoxonase-1 [PON-1] function) in humans have been linked to heightened systemic oxidative stress and atherosclerosis risk. The clinical prognostic use of measuring distinct PON-1 activities has not been established, and the genetic determinants of PON-1 activities are not known. Methods and Results—We established analytically robust high-throughput assays for serum paraoxonase and arylesterase activities and measured these in 3668 stable subjects undergoing elective coronary angiography without acute coronary syndrome and were prospectively followed for major adverse cardiovascular events (MACE= death, myocardial infarction, stroke) over 3 years. Low serum arylesterase and paraoxonase activities were both associated with increased risk for MACE, with arylesterase activity showing greatest prognostic value (quartile 4 versus quartile 1; hazard ratio 2.63; 95% CI, 1.97–3.50; P\u3c0.01). Arylesterase remained significant after adjusting for traditional risk factors, C-reactive protein, and creatinine clearance (hazard ratio, 2.20; 95% CI, 1.60–3.02; P\u3c0.01), predicted future development of MACE in both primary and secondary prevention populations, and reclassified risk categories incrementally to traditional clinical variables. A genome-wide association study identified distinct single nucleotide polymorphisms within the PON-1 gene that were highly significantly associated with serum paraoxonase (1.18×10-303) or arylesterase (4.99×10−116) activity but these variants were not associated with either 3-year MACE risk in an angiographic cohort (n=2136) or history of either coronary artery disease or myocardial infarction in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis consortium (n≈80 000 subjects). Conclusion—Diminished serum arylesterase activity, but not the genetic determinants of PON-1 functional measures, provides incremental prognostic value and clinical reclassification of stable subjects at risk of developing MACE
    • …
    corecore