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Heightened oxidative stress in the form of oxidation of 
lipids and proteins by reactive oxidant species adversely 

contributes to disease progression in cardiovascular disease.1 
Paraoxonase-1 (PON-1) belongs to a family of high-density 
lipoprotein−associated enzymes that show hydrolytic 
activity toward a variety of substrates, including toxins in the 
environment2 and oxidized lipids in the body.3 Consequently, 
diminished activities of PON-1 and other paraoxonases have 
been associated with the development of cardiovascular 
disease.4,5 PON-1 (EC 3.1.1.2) activity in serum is classically 
named after the substrate used to monitor enzymatic function, 
namely, paraoxonase activity (using paraoxon as substrate) 
and arylesterase activity (using phenyl acetate as substrate).6 

Our group has recently observed the relationship between a 
specific PON-1 genotype and functional activity with multiple 
systemic measures of oxidative stress and cardiovascular 
disease risk in humans.7,8 Based on these encouraging 
findings, we developed analytically validated semiautomated 
high throughput methods for arylesterase and paraoxonase 
activity assays amenable to large scale clinical and genetic 
studies. We sought to expand and validate our findings in 
an independent cohort of stable patients undergoing cardiac 
evaluation to examine and contrast the potential role of distinct 
circulating PON-1 activity measures to predict adverse disease 
progression. In addition, we sought to identify genetic loci 
controlling paraoxonase and arylesterase activity by carrying 

Objective—Diminished serum paraoxonase and arylesterase activities (measures of paraoxonase-1 [PON-1] function) in 
humans have been linked to heightened systemic oxidative stress and atherosclerosis risk. The clinical prognostic use of 
measuring distinct PON-1 activities has not been established, and the genetic determinants of PON-1 activities are not 
known.

Methods and Results—We established analytically robust high-throughput assays for serum paraoxonase and arylesterase 
activities and measured these in 3668 stable subjects undergoing elective coronary angiography without acute coronary 
syndrome and were prospectively followed for major adverse cardiovascular events (MACE= death, myocardial infarction, 
stroke) over 3 years. Low serum arylesterase and paraoxonase activities were both associated with increased risk for 
MACE, with arylesterase activity showing greatest prognostic value (quartile 4 versus quartile 1; hazard ratio 2.63; 95% 
CI, 1.97–3.50; P<0.01). Arylesterase remained significant after adjusting for traditional risk factors, C-reactive protein, 
and creatinine clearance (hazard ratio, 2.20; 95% CI, 1.60–3.02; P<0.01), predicted future development of MACE in 
both primary and secondary prevention populations, and reclassified risk categories incrementally to traditional clinical 
variables. A genome-wide association study identified distinct single nucleotide polymorphisms within the PON-1 gene 
that were highly significantly associated with serum paraoxonase (1.18×10-303) or arylesterase (4.99×10−116) activity but 
these variants were not associated with either 3-year MACE risk in an angiographic cohort (n=2136) or history of either 
coronary artery disease or myocardial infarction in the Coronary Artery Disease Genome-Wide Replication and Meta-
Analysis consortium (n≈80 000 subjects).

Conclusion—Diminished serum arylesterase activity, but not the genetic determinants of PON-1 functional measures, provides 
incremental prognostic value and clinical reclassification of stable subjects at risk of developing MACE. 
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out an unbiased genome-wide association study (GWAS) and 
determine whether these genetic factors were associated with 
incident risks of adverse cardiac events or prevalent coronary 
artery disease (CAD).

Patients and Methods
Study Population
The Cleveland Clinic GeneBank study is a large, prospective cohort 
study from 2001 to 2006 that established a well-characterized clini-
cal repository with clinical and longitudinal outcomes data obtained 
from consenting subjects undergoing an elective diagnostic cardiac 
catheterization procedure. All the GeneBank participants gave writ-
ten informed consent approved by the Cleveland Clinic Institutional 
Review Board.

This study involved a total of 3668 subjects in the GeneBank study 
who underwent coronary angiography in the absence of acute coro-
nary syndrome and confirmed by including only those with cardiac 
troponin I <0.03 ng/mL, with no history of revascularization within 30 
days before enrollment, and with at least 3 years of long-term follow-
up. Adjudicated outcomes were ascertained over the ensuing 3 years 
for all subjects after enrollment. Framingham risk factors age, sex, 
cigarette smoking, low-density lipoprotein and high-density lipopro-
tein cholesterol, systolic blood pressure, and diabetes mellitus were 
identified. We defined secondary prevention cohort by a known his-
tory of CAD (including stenosis of any coronary artery ≥50% at the 
time of catheterization), prior myocardial infarction (MI), known his-
tory of peripheral artery disease, history of transient ischemic attack, 
stroke, or known cerebrovascular disease, or previous percutaneous 
or surgical revascularization. Those who did not fulfill secondary pre-
vention cohort criteria were assigned to primary prevention cohort.

An estimate of creatinine clearance was calculated using the 
Cockcroft−Gault equation, because a majority of the patients have 
preserved renal function. High-sensitivity C-reactive protein (hsCRP), 
cardiac troponin I, serum creatinine, fasting blood glucose, and lipid 
profiles were also measured on the Architect ci8200 platform (Abbott 
Laboratories, Abbott Park, IL). Absolute neutrophil counts were ana-
lyzed by the Advia 120 Automated Hematology Analyzer (Siemens 
Healthcare Diagnostics, Deerfield, IL). Major adverse cardiovascular 
events (MACE) were defined as death, nonfatal MI, or nonfatal cere-
brovascular accident after enrollment.

Serum Paraoxonase Activity and 
Arylesterase Activity Assays
Serum paraoxonase and arylesterase activities were measured by spec-
trophotometry in an open channel on the aforementioned Architect 
ci8200 platform, and in a 96-well plate format (Spectramax 384 Plus, 
Molecular Devices, Sunnyvale, CA), respectively. For serum paraox-
onase activity, the rate of generation of paranitrophenol was deter-
mined at 405 nm in 40-fold diluted serum (final) in reaction mixtures 
composed of 1.5 mmol/L paraoxon (Sigma-Aldrich, St. Louis, MO), 
10 mmol/L Tris hydrocholoride, pH 8, 1 mol/L sodium chloride, and 
2 mmol/L calcium chloride at 24°C. An extinction coefficient (at 405 
nm) of 17 000 mol/L–1·cm–1 was used for calculating units of paraox-
onase activity, which is expressed as nanomoles of paranitrophenol 
produced per minute per milliliter of serum. The intra-assay and inter-
assay coefficients of variance for the high-throughput paraoxonase 
activity assay were 1.9% and 3.3%, respectively, on 30 replicates per-
formed on 15 different days. For serum arylesterase activity measure-
ment, initial hydrolysis rates were determined at 270 nm in 50-fold 
diluted serum (final) in reactions mixtures composed of 3.4 mmol/L 
phenylacetate (Sigma-Aldrich), 9 mmol/L Tris hydrocholoride, pH 8, 
and 0.9 mmol/L calcium chloride at 24°C. An extinction coefficient 
(at 270 nm) of 1310 mol/L–1·cm–1 was used for calculating units of 
arylesterase activity, which are expressed as micromoles of phenyl 
acetate hydrolyzed per minute per milliliter of serum. The intra-assay 
and interassay coefficients of variance for arylesterase activity assay 
were 3.4% and 3.9%, respectively, on 20 replicates performed on 10 
different days.

Genotyping
Genotyping was performed on the Affymetrix Genome-Wide 
Human single nucleotide polymorphism (SNP) Array 6.0 platform. 
Using these data and those from 120 phased chromosomes from the 
HapMap CEU samples (HapMap r22 release, National Center for 
Biotechnology Information build 36), genotypes were imputed for 
untyped SNPs across the genome using MACH 1.0 software.9 All 
imputations were done on the forward (+) strand using 562 554 geno-
typed SNPs that had passed quality control filters. QC filters for the 
imputed data set excluded SNPs with Hardy–Weinberg equilibrium P 
values <0.0001 or minor allele frequencies <1%, and individuals with 
<95% call rates. This resulted in 2 421 770 autosomal SNPs that were 
available for analysis.

Statistical Analyses
The Student t test or Wilcoxon-Rank sum test for continuous vari-
ables and χ2 test for categorical variables were used to examine the 
difference between the groups. Kaplan–Meier analysis with Cox pro-
portional hazards regression was used for time-to-event analysis to 
determine hazard ratio (HR) and 95% CI for MACE. Adjustments 
were made for individual traditional cardiac risk factor (including 
age, sex, diabetes mellitus, hypertension, former or current cigarette 
smoking, prior CAD), log-transformed hsCRP, and creatinine clear-
ance. The R package Mclust was used for discriminant analysis. The 
clustering process is based on multivariate normal mixture models. 
The optimal model parameters and the number of clusters were deter-
mined via Bayesian information criterion. All analyses were per-
formed using R 2.13.1 (Vienna, Austria) and P values <0.05 were 
considered statistically significant.

Genome-wide linear regression analyses were used to identify loci 
associated with serum paraoxonase and arylesterase activity after 
adjustment for age and sex under an additive model. Genetic analy-
ses were carried out with PLINK (v1.07) using both untransformed 
(arylesterase activity) and inverse-normal transformed (paraoxonase 
activity) values. Relative risk for experiencing a MACE as a func-
tion of genotype was assessed using Cox proportional hazard models 
with adjustment for age, sex, Framingham ATP-III risk score (which 
includes diabetes mellitus status), and medication use (aspirin and 
statins). Adjusted HR and 95% CI are reported with 2-sided P values. 
A haplotype score test was also used to test all haplotypes with >1% 
frequency, as implemented in the Haplo.Stats package. All genetic 
analyses were performed using SAS version 9.2 (SAS Institute Inc, 
Cary, NC) or R 2.10.1 (http://www.R-project.org).

Associations With CAD
The Coronary Artery Disease Genome-Wide Replication and 
Metanalysis (CARDIoGRAM) Consortium represents a GWAS 
meta-analysis of CAD comprising a discovery set of ≈22 000 cases 
and ≈65 000 controls.10 For each cohort in CARDIoGRAM, logistic 
regression was first used to test for association with CAD using a 
log-additive model with adjustment for age and sex and taking into 
account the uncertainty of possibly imputed genotypes. Subsequently, 
a meta-analysis was performed separately for every SNP from each 
study that passed the quality control criteria using a fixed effect model 
with inverse variance weighting.10 The results of this default meta-
analysis were used to determine whether SNPs influencing PON-1 
functional activity measures were associated with CAD.

Results
Study Population
Table 1 describes the baseline characteristics of our pri-
mary study population of 3668 subjects. Serum arylesterase  
activity levels were normally distributed, with a mean of 
104±25 μmol·min−1·mL−1. However, serum paraoxonase 
activity levels were not normally distributed, with a median 



of 562 μmol·min−1·mL−1 (interquartile range, 315–1045 
μmol·min−1·mL−1). Both serum paraoxonase and arylester-
ase levels were lower in men than in women. Compared with 
those in the highest quartile, subjects in the lowest quartile 
of serum paraoxonase and arylesterase activity were more 
likely to have significantly obstructive (≥50% stenosis) CAD 
(odds ratio, 1.86 [95% CI, 1.53–2.27] P<0.01 for arylester-
ase, and 1.48 [95% CI, 1.22–1.81] P<0.01 for paraoxonase). 
However on adjustment of cardiovascular risk factors, such 
differences were no longer apparent. In addition, there were 
very weak (but statistically significant) correlations between 
serum arylesterase activity and hsCRP (r=−0.09; P<0.001), 
estimated creatinine clearance (r=0.15; P<0.001), and abso-
lute lymphocyte count (r=0.09; P<0.001). In contrast, there 
was no statistically significant relationship between serum 
arylesterase activity and leukocyte count (r=0.02; P=0.28) or 
absolute neutrophil count (r=0.002; P=0.91). These findings 
were similar when correlations were performed within the 
Q192R genotype subgroups (data not shown).

PON-1 Activities and Major Adverse  
Cardiac Outcomes
In the 3668 subjects, a total of 417 cardiac events were 
recorded within the 3-year period of follow-up. Lower serum 
paraoxonase and arylesterase activity levels were associated 
with poorer long-term outcomes when stratified by quartiles 

(Table 2, Figure 1). After adjusting for Framingham risk 
factors, estimated creatinine clearance, diabetes mellitus 
and log-transformed hsCRP, lower serum arylesterase 
activity (HR 2.20 [95% CI, 1.60–3.02]; P<0.01) and to a 
lesser extent lower serum paraoxonase activity (HR 1.39 
[95% CI, 1.04–1.85]; P<0.05) demonstrated increased risk 
in developing future MACE. Even when cardiac troponin 
I levels were added to the model (within the normal range 
of 0.001–0.029 mg/dL), lower serum arylesterase levels 
still maintain a 2-fold increased risk in MACE at 3 years 
(HR, 2.04 [95% CI, 1.49–2.79]; P<0.01). The separation 
is particularly apparent between the lowest quartile and 
the upper 3 quartiles at the cutoff of 87 μmol·min−1·mL−1 
(Figure 1). The addition of serum arylesterase activity or 
serum paraoxonase activity to the model results in significant 
improvement in risk classification with net reclassification 
index of 7.9% for arylesterase activity (P=0.003) and 7.2% 
for paraoxonase activity (P=0.002). The prognostic value 
of serum arylesterase activity was observed within the 
secondary prevention cohort (Table 2), as well as within 
subjects who demonstrated a recent normal catheterization 
(ie, no significant [>50%] angiographic evidence of CAD in 
any major vessel or preceding history of CAD, the primary 
prevention cohort; Table 2). Serum arylesterase activity also 
remained a prognostic indicator within each Framingham risk 
factor subcohort and among those with low hsCRP (Figure 2),  
or in those without statin therapy (n=1512). In addition 
to serum arylesterase remaining a significant predictor of 
MACE after addition of higher sensitivity troponin testing 
to traditional risk factors and laboratory risk markers in the 
models, we further observed an increased risk of developing 
subclinical myocardial necrosis (troponin levels that are 
detectable but remain below the 99th percentile diagnostic 
cutoff among healthy subjects used to define cutoff for MI) 
with decreasing quartiles of serum arylesterase levels (odds 
ratio 2.01 [95% CI, 1.53–2.64]; P<0.001; Figure 3); this trend 
was not observed with serum paraoxonase activity levels 
(Figure 3).

GWAS for PON-1 Activities
We next performed a GWAS for serum paraoxonase and 
arylesterase activity in 2136 GeneBank subjects (all of 
Caucasian ancestry) for whom both genotype and PON-1 
functional data were available. The genomic inflation factors 
for paraoxonase and arylesterase activity were 1.015 and 
1.013, respectively, indicating that the GWAS results were 
not confounded by underlying population stratification, and 
the Q-Q plots are shown in Figure I in the online-only Data 
Supplement. Serum paraoxonase activity was controlled by a 
major locus on chromosome 7 containing the PON-1, PON-
2, and PON-3 genes (Figure 4A). The lead SNP for serum 
paraoxonase activity at this locus (rs2057681) is located within 
the PON-1 gene and yielded a highly significant P value of 
1.18×10–303 (Figure 4A, Table 3). Based on our genotype data, 
rs2057681 is in near complete linkage disequilibrium (LD) 
(r2=0.99) with a functional amino acid substitution in PON-1 
(rs662; Q192R), which is also associated with increased 
paraoxonase activity (P=3.31×10–295; Table 3). Of interest, 
while rs2057681 and rs662 are associated with significant 

Table 1.  Baseline Subject Characteristics From GeneBank 
Cohort (n=3668)

Variable Value

Age, y 63±11

Sex, male, % 65

Body mass index, kg/m2 29.6±6

Race,(Caucasian), % 97

Diabetes mellitus, % 29

Hypertension, % 70

Smokers (former/current), % 65/11

Prior coronary artery disease, % 67

LDL cholesterol, mg/dL 95 (78, 117)

HDL cholesterol, mg/dL 34 (28, 41)

Triglycerides, mg/dL 114 (83, 162)

hsCRP, mg/L 2.00 (0.91, 4.51)

Creatinine clearance, mL/min 99.9 (76.8, 126.3)

Total leukocyte count, ×109cells/L 6.1 (5, 7.4)

Absolute neutrophil count, cells/μL 3.9 (3.1, 5)

Baseline medications, %

  ACE inhibitors/ARBs 49

  β-blockers 61

  Statin 59

  Aspirin 73

Serum paraoxonase activity, nmol·min−1·mL−1 562 (315–1045)

Serum arylesterase activity, μmol·min−1·mL−1 104±25

LDL indicates low-density lipoprotein cholesterol; HDL, high-density lipopro-
tein cholesterol; hsCRP, high-sensitivity C-reactive protein; ACE, angiotensin 
converting enzyme; ARB, angiotensin receptor blocker.

Values expressed in mean±SD or median (interquartile range).



increase in paraoxonase activity, they are also associated with 
significant decrease in arylesterase activity (Table 3). Another 
known coding SNP in PON-1 (rs854560; L55M) exhibited 
significant association with paraoxonase activity as well 
(P=1.27×10–140; Table 3) but is in relatively weak LD (r2=0.20) 
with the aforementioned lead SNPs (rs2057681 and rs662). 
The GWAS analysis for serum arylesterase activity also 
revealed that this chromosome 7 region was the major locus 
controlling this measure of PON-1 functional activity (Figure 
4B). For example, the lead SNP for serum arylesterase activity, 
rs854572, is located in the promoter region of PON-1 and 
yielded a highly significant P value of 4.99×10–116 (Table 3). 
This SNP (rs854572) also was associated with the increase in 
paraoxonase activity. Of note, the 4 lead SNPs for arylesterase 
activity differ from those identified for paraoxonase activity, 
although they do exhibit some association with paraoxonase 
activity and vice versa (Table 3). However, the lead SNPs for 
arylesterase and paraoxonase activity are in weak LD (r2<0.23), 
suggesting that the reciprocal associations are for the most 
part independent. Further, the lead SNPs for both paraoxonase 
(rs2057681) and arylesterase (rs854572) activities are 
localized in the PON-1 gene and not in LD with variants in 
either PON-2 or PON-3 genes. We next determined whether 

the lead SNPs on chromosome 7 influenced other CAD risk 
factors but did not observe any significant evidence for such 
associations (Table I in the online-only Data Supplement). 
Because body mass index and statin use have been shown 
to potentially affect serum paraoxonase activity,11–13 we also 
adjusted the genetic analyses for these potential confounders. 
However, the strength of the association of the lead SNPs with 
paraoxonase and arylesterase activities was not diminished 
when either body mass index or statin use alone was included 
with age and sex in the genetic models or in a fully adjusted 
model that included all 4 covariates (Table II in the online-
only Data Supplement). Thus, the effect of the lead SNPs 
on paraoxonase and arylesterase activities are robust and 
independent of traditional cardiovascular risk factors.

Given the strong effect of the chromosome 7 locus on PON-1 
function, we also carried out GWAS analyses for paraoxonase 
and arylesterase activity conditioned on the lead SNP for each 
respective trait. These analyses did not reveal other loci in the 
genome that were significantly associated with either mea-
sure of PON-1 activity. To gain further insight into the effect 
of the chromosome 7 variants on PON-1 function, we also 
examined the relationship between serum paraoxonase and 
arylesterase activities in our cohort. As illustrated in Figure 5,  

Table 2.  Unadjusted and Adjusted HR for Major Adverse Cardiovascular Events at 3-Year Follow-Up According to Serum 
Arylesterase Activity and Paraoxonase Activity Quartiles, Stratified According to Primary Versus Secondary Prevention

Serum Arylesterase Activity, μmol·min−1·mL−1 Serum Paraoxonase Activity, μmol·min−1·mL−1

Quartile 4 Quartile 3 Quartile 2 Quartile 1 Quartile 4 Quartile 3 Quartile 2 Quartile 1

All subjects (n=3668)

  Range ≥121 103–121 87–103 <87 ≥1045 562–1045 315–562 <315

  Unadjusted HR 1 1.50
(1.1–2.05)*

1.45
(1.06–1.99)*

2.63
(1.97–3.50)**

2.20
(1.60–3.02)**

1 1.39
(1.04–1.84)*

1.19
(0.89–1.6)

1.1
(0.82–1.48)

1.63
(1.24–2.14)**

1.39
(1.04–1.85)*

  Adjusted HR† 1 1.44
(1.05–1.97)*

1.34
(0.96–1.86)

1 1.04
(0.77–1.4)

  Adjusted HR‡ 1 1.40
(1.02–1.92)*

1.27
(0.91–1.77)

1.85
(1.35–2.55)**

1 1.1
(0.82–1.49)

1.00
(0.74–1.36)

1.27
(0.95–1.70)

Secondary prevention subjects (n=2636)

  Range ≥119 101–119 86–101 <86 ≥1022 549–1022 308–549 <308

  Unadjusted HR 1 1.24
(0.89–1.73)

1.26
(0.9–1.75)

2.01
(1.49–2.72)**

1.78
(1.28–2.48)**

1 1.35
(0.98–1.84)

1.2
(0.87–1.65)

1.45
(1.07–1.97)*

1.30
(0.94–1.79)

  Adjusted HR† 1 1.23
(0.88–1.72)

1.21
(0.86–1.72)

1 1.2
(0.87–1.66)

1.14
(0.83–1.57)

  Adjusted HR‡ 1 1.17
(0.83–1.63)

1.13
(0.80–1.61)

1.51
(1.08–2.11)*

1 1.12
(0.81–1.56)

1.12
(0.81–1.55)

1.18
(0.86–1.64)

Primary prevention subjects (n=1032)

  Range ≥125 107–125 91–107 <91 ≥1107 644–1107 335–644 <335

  Unadjusted HR 1 0.91
(0.35–2.35)

2.63
(1.21–5.72)*

4.38
(2.11–9.09)**

4.00
(1.82–8.82)**

1 1.20
(0.61–2.38)

0.71
(0 33–1.55)

2.15
(1.16–3.97)*

1.85
(0.99–3.45)

  Adjusted HR† 1 0.83
(0.32–2.18)

2.50
(1.08–5.79)*

1 1.09
(0.55–2.18)

0.71
(0 33–1.51)

  Adjusted HR‡ 1 0.84
(0.32–2.21)

2.44
(1.02–5.84)*

3.02
(1.35–6.80)**

1 0.92
(0.46–1.84)

0.65
(0 30–1.42)

1.68
(0.88–3.19)

HR indicates hazard ratio.
†Model 1: Adjusted for traditional risk factors (include age, sex, systolic blood pressure, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, 

cigarette smoking, and diabetes mellitus).
‡Model 2: Adjusted for traditional risk factors (Model 1), plus log-transformed high-sensitivity C-reactive protein levels, creatinine clearance, race, body mass index, 

and statin.
*P<0.05 and **P<0.01.



both activities were significantly correlated overall (r=0.30; 
P<0.001) and exhibited a striking grouping of 3 distinct pat-
terns when plotted against each other. These 3 clusters were 
found to correspond nearly exactly with the 3 genotype groups 
of the Q192R (rs662) polymorphism (Figure 5A), with 97.2% 
with the genotype QQ in the top cluster, 97.2% with genotype 
QR in the middle cluster, and 91.3% with genotype RR in the 

bottom cluster. However, such a pattern was not observed with 
the 3 genotype groups of the lead SNP for serum arylesterase 
activity (rs854572; G>C, Figure 5B). Quantitative analysis of 
the separation of the 3 genotypes, GG, GC, and CC, across the 
3 clusters showed 50.7% with genotype CG in the top cluster, 
48.4% with genotype CG in the middle cluster, and 51.4% 
with genotype CG in the bottom cluster.

Figure 1.  Kaplan–Meier analysis for long-term major adverse cardiac events stratified by serum arylesterase (left column) and paraoxonase 
(right column) activities quartiles in overall (top row), secondary prevention (middle row), and primary prevention (bottom row) populations.



Association of PON-1 Variants With Incident 
MACE and Prevalent Cardiovascular Disease
We next sought to determine whether the lead variants 
influencing paraoxonase and arylesterase activity were 
associated with the development of MACE. These analyses 
included the 2136 subjects used in the quantitative association 
described above plus an additional 567 subjects for whom 
genotype and MACE data were also available (total n=2703). 
As shown in Table 4, there were no individual effects of the 
Q192R (rs662) and L55M (rs854560) substitutions on incident 
risk of MACE in GeneBank subjects. Given the differential 
effects of the associated variants on PON-1 function (eg, 
rs662 is associated with increase in paraoxonase activity 
but decrease in arylesterase activity), we also constructed 
haplotypes with rs662, rs854560, rs854570, and rs854572 and 
specifically tested the ATAG haplotype, which leads to modest 
decreases in both paraoxonase and arylesterase activity 
(data not shown). However, risk of future MACE was not 
significantly increased in subjects carrying 1 (HR=0.96; 95% 
CI, 0.68–1.35) or 2 (HR=0.91; 95% CI, 0.50–1.63) copies of 
this haplotype (P=0.72; Table 4). Similarly, an analysis using 
a haplotype score test that included all haplotypes with >1% 

frequency also did not reveal any associations with MACE 
(data not shown).

To further evaluate the genetic contribution of these SNPs 
to cardiovascular risk, we used the large CARDIoGRAM con-
sortium, which comprises ≈80 000 case–controls subjects. As 
shown in Table 5, no significant evidence for association of 
these SNPs was observed with risk of prevalent CAD. A sub-
analysis with only cases that had a positive history for MI also 
did not reveal any associations (Table 5).

Discussion
PON-1 is an atherosclerosis protective enzyme associated 
with high-density lipoprotein and systemic antioxidant func-
tion. Its catalytic activity within crude serum mixtures has tra-
ditionally been measured by quantifying enzymatic hydrolysis 
rates of 2 known in vitro substrates, with functional activities 
named paraoxonase and arylesterase activities.4,5 There are 
several novel findings in this report that describe the clinical 
and genetic associations of PON-1 activities with cardiovas-
cular risks that differ from prior observations from smaller 
cohorts. First, we demonstrated the prognostic value of serum 
arylesterase activity (and to a lesser extent serum paraoxonase 
activity) in predicting long-term cardiovascular risk in a wide 
range of subjects already treated with contemporary medi-
cal therapy. We observed that diminished serum arylesterase 
activity, particularly within the lowest quartile range, was 
predictive of adverse long-term cardiac events independent of 
standard clinical and biochemical risk factors and provided 
incremental value in reclassifying subjects who are at higher 
risk of long-term MACE. Furthermore, the prognostic value 
of serum arylesterase activity was evident in both primary as 
well as secondary prevention subjects. The fact that aryles-
terase activity provided prognostic value consistently within 
subjects with or without underlying angiographic evidence of 
significant CAD implies that a lack of systemic antioxidant 
defense mechanisms (a primary function of PON-1) may both 
promote greater vulnerability to oxidative stress, as well as 
increase risk for development and progression of CAD in sub-
jects. Moreover, the ability of low serum arylesterase activity 

Figure 2.  Forest plot regarding hazard 
ratios of serum arylesterase and paraox-
onase activities according to traditional 
cardiac risk factors in subgroups of 
patients. hsCRP indicates high-sensitivity 
C-reactive protein.

Figure 3.  Adjusted odds ratio across serum arylesterase and 
paraoxonase activity quartiles with prevalent subclinical myocar-
dial necrosis (defined as cardiac troponin I ≥0.009 ng/mL).



to identify those at significant increased risk of MACE, even 
among primary prevention subjects with recent coronary 
angiographic data showing <50% stenosis in all major coro-
nary vessels, suggests this assay has prognostic value and can 
identify a vulnerable cohort of subjects who otherwise are not 
identified as being at high risk. Taken together, the present 
results suggest that enzymatic activity measures with aryles-
terase, more so than paraoxonase, serve as a powerful prog-
nostic indicator of cardiovascular risk in a broad spectrum of 
subjects.

Studies on PON-1 activities have relied on quantifying 
its wide range of enzymatic activities in breaking down in 
vitro substrates like paraoxon (paraoxonase activity) and 
phenylacetate (arylesterase activity). These activities are 
often reported together and the findings are commonly con-
cordant. Hence, the distinction between serum paraoxonase 
and arylesterase activities in predicting future adverse car-
diac events is somewhat unexpected, even though histori-
cally the correlation between these 2 measures has not been 
particularly tight. The unique relationship between the 2 

PON-1 activity measurements is largely the result of a very 
strong association between serum paraoxonase activity and 
its underlying genetic determinants, which may also explain 
why serum arylesterase activity is normally distributed 
whereas serum paraoxonase activity was not. Meanwhile, the 
strong association between the PON gene cluster and serum 
arylesterase activity confirms the long-standing assumption 
that this locus harbors important genetic determinants of 
serum arylesterase activity.

The significant genetic associations revealed by the 
GWAS analyses for paraoxonase and arylesterase activities 
are of further interest for several reasons. First, there was a 
stronger relationship between serum paraoxonase activity 
levels and its genetic determinants than those with serum 
arylesterase activity. Second, our results confirm the strong 
association of PON-1 variants with serum paraoxonase and 
arylesterase activities and demonstrate that the 2 measured 
enzymatic functions are associated in a Mendelian-
like fashion by a single, major locus on chromosome 7 
containing the PON gene cluster. This is supported by the 

Figure 4.  Manhattan plots for Genome-Wide Asso-
ciation Studies identifying highest single nucleotide 
polymorphisms associated with serum paraoxonase 
(A), and arylesterase (B) activity levels.



GWAS analyses conditioned on the lead SNPs, which did 
not identify other genomic regions associated with either 
paraoxonase or arylesterase activity. Furthermore, the lead 
SNPs for either enzymatic activity localize to the PON-1 
gene, are distinct from each other, and are not in LD with 
SNPs in the neighboring PON-3 and PON-2 genes. However, 
although the PON-1 variants exhibited strong (if not opposed) 
effects on PON function, they were not associated with 
future risk of MACE, either individually or as a haplotype 
that modestly decreased both paraoxonase and arylesterase 
activity. These results are consistent with our analyses from 
the CARDIoGRAM consortium, which did not reveal an 

association of these SNPs with either prevalent CAD or 
history of MI in ≈80 000 subjects. It should be noted, however, 
that because the lead SNPs only contributed to an estimated 
15% of the PON-1 activity variation, other processes, such 
as posttranslational modifications, could also play a role 
in determining the ultimate functionality of PON-1. For 
example, PON-1 is known to be sensitive to posttranslational 
oxidative modification and inactivation.14 It is also possible 
that our study was underpowered to detect genetic effects on 
prospective risk of MACE because only 311 subjects out of 
the ≈2700 subjects included in these analyses experienced a 
MACE over 3 years of follow-up.

Table 3.  Mean Serum Paraoxonase and Arylesterase Activity as a Function of Genotype for Lead SNPs on Chromosome 7

Position (bp)* SNP Alleles† MAF‡

Serum Paraoxonase Activity, nmoles·min−1·mL−1 Serum Arylesterase Activity, μmoles·min−1·mL−1

0 1 2 P Value‡ 0 1 2 P Value‡

94 774 065 rs2269829 A/G 0.28 389±269 
(n=1078)

934±361 
(n=905)

1434±492 
(n=153)

3.27×10−288 105±25 
(n=1106)

100±24 
(n=930)

93±20 
(n=157)

4.22×10−11

94 775 382 rs662 (Q192R) A/G 0.29 382±261 
(n=1062)

930±358 
(n=914)

1424±497 
(n=160)

3 31×10−295 105±25 
(n=1088)

100±24 
(n=940)

94±21 
(n=165)

9.43×10−11

94 776 193 rs2057681 A/G 0.29 377±253 
(n=1055)

929±353 
(n=919)

1433±501 
(n=162)

1.18×10−303 105±25 
(n=1080)

100±24 
(n=946)

94±21 
(n=167)

2.11×10−10

94 784 020 rs854560 (L55M) A/T 0.36 906±489 
(n=877)

620±398 
(n=1020)

311±280 
(n=269)

1.27×10−140 109±23 
(n=868)

99±24 
(n=1053)

90±22 
(n=272)

2.03×10−38

94 790 628 rs854570 A/C 0.36 670±470 
(n=898)

711±469 
(n=987)

721±455 
(n=251)

2.90×10−09 91±21 
(n=920)

107±23 
(n=1014)

122±21 
(n=259)

5.10×10−106

94 792 632 rs854572 G/C 0.46 572±407 
(n=645)

716±474 
(n=1075)

831±494 
(n=416)

1.23×10−35 88±21 
(n=659)

104±22 
(n=1104)

119±22 
(n=430)

4.99×10−116

94 793 157 rs705382 G/C 0.36 670±470 
(n=897)

710±469 
(n=989)

723±455 
(n=250)

2.92×10−09 91±21 
(n=919)

107±23 
(n=1016)

122±21 
(n=258)

1.98×10−106

94 793 464 rs757158 C/T 0.42 569±403 
(n=725)

731±478 
(n=1053)

843±501 
(n=358)

3.97×10−38 89±22 
(n=741)

105±22 
(n=1084)

120±22 
(n=368)

1.04×10−104

SNPs indicate single nucleotide polymorphisms; MAF, minor allele frequency.
Data are shown as mean±SD as a function of carrying 0, 1, or 2 copies of the minor alleles for lead genome-wide association study SNPs.
* Base pair positions on chromosome 7 are given according to National Center for Biotechnology Information build 36.1 of the reference human genome sequence.
†Major/minor alleles are given for Caucasians based on the forward (+) DNA strand.
‡P values are obtained from multiple linear regression using inverse normal-transformed values for paraoxonase activity and untransformed values for arylesterase

activity, adjusted for age and sex.

Figure 5.  Relationship between serum arylesterase and paraoxonase activity levels stratified according to (A) the lead single nucleotide 
polymorphism (SNP) for serum paraoxonase activity (rs662; Q192R); (B) the lead SNP for serum arylesterase activity (rs854572; G>C). 
Percentages reflect separation of the 3 genotypes within each stratified cluster of each genotype.



The lack of associations between the lead SNPs for PON 
and arylesterase activities with CAD and MI risks in humans 
in our study are in direct contrast to what has been observed in 
mice where PON-1 deficiency leads to increased aortic lesion 
formation3 and transgenic mice over expressing PON-1 are 
protected.15,16 It is of interest that the PON-1 transgenic mouse 
models demonstrating protective effects have 50% to 400% 
increased serum arylesterase activity,15,16 far in excess of the 
modest changes in activity associated with the peak SNP iden-
tified in the arylesterase GWAS. If arylesterase activity is the 
more important atheroprotective aspect of PON-1 function, 
as our clinical associations with MACE suggest, then it may 
not be surprising that an association was not observed with 
the SNPs identified. For example, the lead SNP for aryles-
terase activity (rs854572) only increases activity by ≈16% 
per minor allele copy. It is, thus, possible that the genetic 
effects on arylesterase activity from this SNP are too weak 
to observe, especially if a minimum biological threshold of 
activity change is needed to influence risk of prevalent CAD, 
history of MI, or incident risk of MACE.

The ability for serum arylesterase activity to identify 
a high-risk population in the primary prevention cohort 
that just underwent cardiac catheterization and showed no 

significant evidence of stenoses in any major vessel may 
have important clinical implications. Even though our sub-
set analysis was limited by the relatively smaller sample 
size and low event rates, a significant 4-fold increase risk in 
long-term MACE in these otherwise low risk subjects was 
identified. Use of serum arylesterase activity may thus have 
clinical use and help identify an important patient cohort 
that may warrant more aggressive risk factor reduction 
treatment strategies who might otherwise not be targeted 
for aggressive preventive intervention. In addition to low 
serum arylesterase activity predicting increased risk for 
MACE in primary prevention subjects, there was a direct 
association also noted between lower serum arylesterase 
activity level and increased prevalence of significantly 
obstructive CAD by angiography. Of note, we did not find 
a strong relationship between systemic inflammatory bio-
markers, such as CRP or leukocyte parameters, with serum 
arylesterase levels in this group of stable cardiac patients. 
This observation is consistent with previous reports that 
distinguished systemic inflammatory from oxidative stress 
processes.

Several limitations of our study should be noted. Serum 
paraoxonase and arylesterase activities used substrates that 
are not the endogenous substrates for PON-1, but are used 
because they are not readily influenced by other esterases/
lactonases in serum, and are presumed to reflect the underlying 
catalytic activity of PON-1. The GWAS results observed 
demonstrate these assumptions are reasonable, as only genetic 
variations in the PON-1 gene were observed to be associated 
with variations in paraoxonase and arylesterase activities. A 
further potential limitation is that the measurements were only 
made under fasting conditions at a single time point. Hence, 
we are unable to determine the variability and prognostic 
value of level changes over time and the impact of dietary or 
therapeutic interventions on serum arylesterase activity level. 
Selection bias may also be present for those undergoing cardiac 
catheterization for symptomatic evaluation and management 
of cardiac diseases at a tertiary care setting, but the large 
sample size and event rates of the patient population, together 
with careful phenotypic evaluation, including angiographic 
data, provides unique insights and adequate power to adjust 
for clinical and biomarker variables.

Table 4.  Association of Variants Controlling Plasma 
Paraoxonase or Arylesterase Activity With MACE

SNP/Haplotype

HR (95% CI)

0 1 2 P Value

Rs2057681 1 (n=1341) 1.18 (0.94–1.49) 
(n=1155)

0.94 (0.60–1.49) 
(n=207)

0.48

Rs854572 1 (n=794) 1.18 (0.91–1.54) 
(n=1358)

1.12 (0.81–1.56) 
(n=551)

0.44

ATAG 1 (n=1212) 0.96 (0.68–1.35) 
(n=1236)

0.91 (0.50–1.63) 
(n=255)

0.72

MACE indicates major adverse cardiovascular events; SNPs indicate single 
nucleotide polymorphisms; HR, hazard ratio.

HRs are shown as a function of carrying 0, 1, or 2 copies of the minor allele 
for the lead SNP for paraoxonase (rs2057681) and arylesterase (rs854572) 
activity or the ATAG haplotype of rs662, rs854560, rs854570, and rs854572. 
HR are adjusted for age, sex, Framingham ATP-III risk score, and medication use 
(aspirin and statins). 2703 subjects were used in these analyses, of which 311 
experienced a MACE (death, MI, or stroke) over 3 y of follow-up.

Table 5.  Association of Identified SNPs With Risk of Prevalent CAD and Risk of MI in the CARDIoGRAM Consortium

SNP Allele Frequency

Risk of CAD Risk of MI

OR (95% CI) P Value n OR (95% CI) P Value N

rs2269829 G 0.28 0.99 (0.97–1.03)) 0.74 83 324 0.97 (0.94–1.01) 0.17 52 973

rs662 (Q192R) G 0.30 0.99 (0.96–1.02) 0.60 79 262 0.98 (0.94–1.02) 0.24 52 306

rs2057681 G 0.28 0.99 (0.96–1.02) 0.44 84 106 0.97 (0.93–1.00) 0.09 53 649

rs854560 (L55M) N/A N/A N/A N/A N/A N/A N/A N/A

rs854570 C 0.41 1.02 (0.99–1.05) 0.14 81 019 1.01 (0.98–1.05) 0.46 51 143

rs854572 C 0.52 1.01 (0.99–1.04) 0.33 83 486 1.00 (0.97–1.04) 0.74 53 204

rs705382 C 0.41 1.02 (1.0–1.05) 0.09 83 367 1.02(0.98–1.05) 0.40 53 035

rs757158 C 0.54 0.99 (0.96–1.02) 0.50 78 275 0.99 (0.96–1.03) 0.71 51 559

SNP indicates single nucleotide polymorphism; CAD, coronary artery disease; MI, myocardial infarction; OR, odds ratio; N/A, not available; CARDIoGRAM, Coronary 
Artery Disease Genome-Wide Replication And Meta-Analysis.



Conclusions
Diminished serum arylesterase activity can provide incre-
mental prognostic value and clinical reclassification of stable 
patients at risk of developing MACE, even among primary 
prevention subjects who just demonstrated no significant cor-
onary stenoses by angiography and might otherwise be dis-
missed as low risk. Despite the strong genetic effects of the 
PON locus on serum paraoxonase and arylesterase activities, 
the identified variants were not associated with risk of incident 
MACE or prevalent CAD.
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Supplemental Table I  Association of Lead SNPs on Chromosome 7 with Adjustment for BMI and Statin Use. 

Serum Paraoxonase Activity Serum Arylesterase Activity 

SNP p-valuea p-valueb p-valuec p-valued p-valuea p-valueb p-valuec p-valued

rs2269829 3.27x10-288 4.02x10-288 2.83 x10-288 3.49 x10-288 4.22x10-11 3.54x10-11 3.96x10-11 3.33x10-11

rs662 (Q192R) 3.31x10-295 4.36 x10-295 2.43 x10-295 3.20 x10-295 9.43x10-11 8.19x10-11 8.63 x10-11 7.50 x10-11

rs2057681 1.18x10-303 1.56 x10-303 9.92 x10-304 1.32 x10-303 2.11x10-10 1.83 x10-10 1.98 x10-10 1.71 x10-10

rs854560 (L55M) 1.27x10-140 1.22 x10-140 1.31 x10-140 1.26 x10-140 2.03x10-38 2.48 x10-38 2.14 x10-38 2.61 x10-38

rs854570 2.90x10-09 2.87 x10-09 3.00 x10-09 2.97 x10-09 5.10x10-106 4.98 x10-106 3.12 x10-106 3.07 x10-106 

rs854572 1.23x10-35 1.18 x10-35 1.32 x10-35 1.27 x10-35 4.99x10-116 7.21 x10-116 3.73 x10-116 5.42 x10-116 

rs705382 2.92x10-09 2.90 x10-09 3.03 x10-09 3.00 x10-09 1.98x10-106 1.92 x10-106 1.15 x10-106 1.12 x10-106 

rs757158 3.97x10-38 3.87 x10-38 4.28 x10-38 4.17 x10-38 1.04x10-104 1.28 x10-104 8.10 x10-105 1.00 x10-104 

ap-values obtained with adjustment for age and gender. 
bp-values obtained with adjustment for age, gender, and BMI. 
cp-values obtained with adjustment for age gender, and statin use. 
dp-values obtained with adjustment for age, gender, BMI, and statin use. 



Supplemental Table II  Association of Identified SNPs with CAD Biomarkers. 

SNP Total 
Cholesterol 

LDL 
cholesterol 

HDL 
cholesterol 

bC-reactive 
Protein 

Creatinine 
clearance

rs2269829 0.12 0.12 0.77 0.29 0.19

rs662 (Q192R) 0.13 0.11 0.76 0.31 0.28

rs2057681 0.13 0.12 0.92 0.35 0.30

rs854560 (L55M) 0.76 0.54 0.40 0.49 0.15

rs854570 0.58 0.17 0.57 0.31 0.87

rs854572 0.83 0.33 0.52 0.70 0.82

rs705382 0.57 0.17 0.55 0.32 0.86

rs757158 0.94 0.43 0.78 0.68 0.88

ap-values are shown for association of lead SNPs on chromosome 7 with CAD biomarkers, with adjustment for age and gender. 
blog-transformed prior to analysis. 



Paraoxonase Activity Arylesterase Activity

Supplemental Figure I Q-Q plots for GWAS of paraoxonase and arylesterase activity.
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