206 research outputs found

    Physiology and Pathophysiology of CLC-1: Mechanisms of a Chloride Channel Disease, Myotonia

    Get PDF
    The CLC-1 chloride channel, a member of the CLC-channel/transporter family, plays important roles for the physiological functions of skeletal muscles. The opening of this chloride channel is voltage dependent and is also regulated by protons and chloride ions. Mutations of the gene encoding CLC-1 result in a genetic disease, myotonia congenita, which can be inherited as an autosmal dominant (Thomsen type) or an autosomal recessive (Becker type) pattern. These mutations are scattered throughout the entire protein sequence, and no clear relationship exists between the inheritance pattern of the mutation and the location of the mutation in the channel protein. The inheritance pattern of some but not all myotonia mutants can be explained by a working hypothesis that these mutations may exert a “dominant negative” effect on the gating function of the channel. However, other mutations may be due to different pathophysiological mechanisms, such as the defect of protein trafficking to membranes. Thus, the underlying mechanisms of myotonia are likely to be quite diverse, and elucidating the pathophysiology of myotonia mutations will require the understanding of multiple molecular/cellular mechanisms of CLC-1 channels in skeletal muscles, including molecular operation, protein synthesis, and membrane trafficking mechanisms

    The Behavior of Retaining Walls Under 1999 Chi-Chi Earthquake

    Get PDF
    This paper reports failure of retaining structures related to the 1999 Chi-Chi earthquake. On September 21 of 1999, an earthquake with a magnitude of 7.3 on the Richter scale struck Taiwan. At the site near Tou-Sheh, overturning failure was observed on a 2.5 m-high gravity wall located near the epicenter. At the site near the Temple of Ten-thousand Buddha, a masonry wall constructed with cobble was damaged. Upper part of wall shifted outward about 0.2 m with respect to its lower part. At the site of Cinema-Culture Town, a gravity wall built on top of the Che-Lung-Pu fault was severely damaged. The heel of the wall was uplifted by the fault rupture. At the parking lot of the Lalu Resort, the retaining wall constructed on a slope moved down the slope during the earthquake. A circular sliding surface can be observed in the collapsed backfill. At the entrance of National Chi-Nan University, a geogrid-reinforced wall was severely damaged during the earthquake. Reinforcing strips were pulled out under the seismic load and fill materials fell out

    Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.

    Get PDF
    Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing

    Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β.

    Get PDF
    Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation

    Optimizing Human Synovial Fluid Preparation for Two-Dimensional Gel Electrophoresis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteome analysis is frequently applied in identifying the proteins or biomarkers in knee synovial fluids (SF) that are associated with osteoarthritis and other arthritic disorders. The 2-dimensional gel electrophoresis (2-DE) is the technique of choice in these studies. Disease biomarkers usually appear in low concentrations and may be masked by high abundant proteins. Therefore, the main aim of this study was to find the most suitable sample preparation method that can optimize the expression of proteins on 2-DE gels that can be used to develop a reference proteome picture for non-osteoarthritic knee synovial fluid samples. Proteome pictures obtained from osteoarthritic knee synovial fluids can then be compared with the reference proteome pictures obtained in this study to assist us in identifying the disease biomarkers more correctly.</p> <p>Results</p> <p>The proteomic tool of 2-DE with immobilized pH gradients was applied in this study. A total of 12 2-DE gel images were constructed from SF samples that were free of osteoarthritis. In these samples, 3 were not treated with any sample preparation methods, 3 were treated with acetone, 3 were treated with 2-DE Clean-Up Kit, and 3 were treated with the combination of acetone and 2-D Clean-Up Kit prior to 2-DE analysis. Gel images were analyzed using the PDQuest Basic 8.0.1 Analytical software. Protein spots that were of interest were excised from the gels and sent for identification by mass spectrometry. Total SF total protein concentration was calculated to be 21.98 ± 0.86 mg/mL. The untreated SF samples were detected to have 456 ± 33 protein spots on 2-DE gel images. Acetone treated SF samples were detected to have 320 ± 28 protein spots, 2-D Clean-Up Kit treated SF samples were detected to have 413 ± 31 protein spots, and the combined treatment method of acetone and 2-D Clean-Up Kit was detected to have 278 ± 26 protein spots 2-DE gel images. SF samples treated with 2-D Clean-Up Kit revealed clearer presentation of the isoforms and increased intensities of the less abundant proteins of haptoglobin, apolipoprotein A-IV, prostaglandin-D synthase, alpha-1B-glycoprotein, and alpha-2-HS-glycoprotein on 2-DE gel images as compared with untreated SF samples and SF samples treated with acetone.</p> <p>Conclusions</p> <p>The acetone precipitation method and the combined treatment effect of acetone and 2-DE Clean-Up Kit are not preferred in preparing SF samples for 2-DE analysis as both protein intensities and numbers decrease significantly. On the other hand, 2-D Clean-Up Kit treated SF samples revealed clearer isoforms and higher intensities for the less abundant proteins of haptoglobin, apolipoprotein A-IV, prostaglandin-D synthase, alpha-1B-glycoprotein, and alpha-2-HS-glycoprotein on 2-DE gels. As a result, it is recommended that SF samples should be treated with protein clean up products such as 2-D Clean-Up Kit first before conducting proteomic research in searching for the relevant biomarkers associated with knee osteoarthritis.</p

    Long Noncoding RNAs-Related Diseases, Cancers, and Drugs

    Get PDF
    Long noncoding RNA (lncRNA) function is described in terms of related gene expressions, diseases, and cancers as well as their polymorphisms. Potential modulators of lncRNA function, including clinical drugs, natural products, and derivatives, are discussed, and bioinformatic resources are summarized. The improving knowledge of the lncRNA regulatory network has implications not only in gene expression, diseases, and cancers, but also in the development of lncRNA-based pharmacology
    corecore