640 research outputs found

    CCN2 Enhances Resistance to Cisplatin-Mediating Cell Apoptosis in Human Osteosarcoma

    Get PDF
    Osteosarcoma (OS) is the most common form of malignant bone tumor and is an aggressive malignant neoplasm exhibiting osteoblastic differentiation. Cisplatin is one of the most efficacious antitumor drugs for osteosarcoma patients. However, treatment failures are common due to the development of chemoresistance. CCN2 (also known as CTGF), is a secreted protein that binds to integrins, modulates the invasive behavior of certain human cancer cells. However, the effect of CCN2 in cisplatin-mediated chemotherapy is still unknown. Here, we found that CCN2 was upregulated in human osteosarcoma cells after treatment with cisplatin. Moreover, overexpression of CCN2 increased the resistance to cisplatin-mediated cell apoptosis. In contrast, reduction of CCN2 by CCN2 shRNA promoted the chemotherapeutic effect of cisplatin. We also found that CCN2 provided resistance to cisplatin-induced apoptosis through upregulation of Bcl-xL and survivin. Knockdown of Bcl-xL or survivin removed the CCN2-mediated resistance to apoptosis induced by cisplatin. On the other hand, CCN2 also promoted FAK, MEK, and ERK survival signaling pathways to enhance tumor survival during cisplatin treatment. In a mouse xenograft model, overexpression of CCN2 promoted resistance to cisplatin. However, knockdown of CCN2 increased the therapeutic effect of cisplatin. Therefore, our data suggest that CCN2 might be a critical oncogene of human osteosarcoma for cisplatin-resistance and supported osteosarcoma cell growth in vivo and in vitro

    Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β.

    Get PDF
    Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation

    Cyclooxygenase-2 enhances α2β1 integrin expression and cell migration via EP1 dependent signaling pathway in human chondrosarcoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin (PG) synthase, has been implicated in tumor metastasis. Interaction of COX-2 with its specific EP receptors on the surface of cancer cells has been reported to induce cancer invasion. However, the effects of COX-2 on migration activity in human chondrosarcoma cells are mostly unknown. In this study, we examined whether COX-2 and EP interaction are involved in metastasis of human chondrosarcoma.</p> <p>Results</p> <p>We found that over-expression of COX-2 or exogenous PGE<sub>2 </sub>increased the migration of human chondrosarcoma cells. We also found that human chondrosarcoma tissues and chondrosarcoma cell lines had significant expression of the COX-2 which was higher than that in normal cartilage. By using pharmacological inhibitors or activators or genetic inhibition by the EP receptors, we discovered that the EP1 receptor but not other PGE receptors is involved in PGE<sub>2</sub>-mediated cell migration and α2β1 integrin expression. Furthermore, we found that human chondrosarcoma tissues expressed a higher level of EP1 receptor than normal cartilage. PGE<sub>2</sub>-mediated migration and integrin up-regulation were attenuated by phospholipase C (PLC), protein kinase C (PKC) and c-Src inhibitor. Activation of the PLCβ, PKCα, c-Src and NF-κB signaling pathway after PGE<sub>2 </sub>treatment was demonstrated, and PGE<sub>2</sub>-induced expression of integrin and migration activity were inhibited by the specific inhibitor, siRNA and mutants of PLC, PKC, c-Src and NF-κB cascades.</p> <p>Conclusions</p> <p>Our results indicated that PGE<sub>2 </sub>enhances the migration of chondrosarcoma cells by increasing α2β1 integrin expression through the EP1/PLC/PKCα/c-Src/NF-κB signal transduction pathway.</p

    AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma

    Get PDF
    Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways

    In vitro activities of antimicrobial combinations against planktonic and biofilm forms of Stenotrophomonas maltophilia

    Get PDF
    ObjectivesTo investigate the in vitro activity of antibiotic combinations against Stenotrophomonas maltophilia isolates and their associated biofilms.MethodsThirty-two S. maltophilia clinical isolates with at least twenty-five different pulsotypes were tested. The antibacterial activity of various antibiotic combinations against seven randomly selected planktonic and biofilm-embedded S. maltophilia strains with strong biofilm formation was assessed using broth methods. Extraction of bacterial genomic DNA and PCR detection of antibiotic resistance and biofilm-related genes were also performed.ResultsThe susceptibility rates of levofloxacin (LVX), fosfomycin (FOS), tigecycline (TGC) and sulfamethoxazole-trimethoprim (SXT) against 32 S. maltophilia isolates were 56.3, 71.9, 71.9 and 90.6%, respectively. Twenty-eight isolates were detected with strong biofilm formation. Antibiotic combinations, including aztreonam-clavulanic (ATM-CLA) with LVX, ceftazidime-avibactam (CZA) with LVX and SXT with TGC, exhibited potent inhibitory activity against these isolates with strong biofilm formation. The antibiotic resistance phenotype might not be fully caused by the common antibiotic-resistance or biofilm-formation gene.ConclusionS. maltophilia remained resistant to most antibiotics, including LVX and β-lactam/β-lactamases; however, TGC, FOS and SXT still exhibited potent activity. Although all tested S. maltophilia isolates exhibited moderate-to-strong biofilm formation, combination therapies, especially ATM-CLA with LVX, CZA with LVX and SXT with TGC, exhibited a higher inhibitory activity for these isolates

    Comparison of Acute Lobar Nephronia and Acute Pyelonephritis in Children: A Single-Center Clinical Analysis in Southern Taiwan

    Get PDF
    BackgroundPatients with acute lobar nephronia (ALN) require a longer duration of antimicrobial treatment than those with acute pyelonephritis (APN), and ALN is associated with renal scarring. The aim of this study was to provide an understanding of ALN by comparing the clinical features of pediatric patients with ALN and APN.MethodsWe enrolled all of the patients with ALN (confirmed by computed tomography) admitted to our hospital from 1999 to 2012 in the ALN group. In addition, each patient diagnosed with APN who was matched for sex, age, and admission date to each ALN patient was enrolled in the APN group. The medical charts of patients in these two groups were retrospectively reviewed and analyzed for comparison.ResultsThe fever duration after hospitalization in the ALN group and the APN group were 4.85 ± 2.33 days and 2.30 ± 1.47 days respectively. The microbiological distributions and the majority of susceptibilities were similar in the ALN and APN groups. The majority of clinical manifestations are nonspecific and unreliable for the differentiation of ALN and APN. The patients with ALN were febrile for longer after antimicrobial treatment, had more nausea/vomiting symptoms, higher neutrophil count, bandemia, and C-reactive protein (CRP) levels, and lower platelet count (all p < 0.05). In multivariate analysis, initial CRP levels, nausea/vomiting symptoms, and fever duration after admission were independent variables with statistical significance to predict ALN. Severe nephromegaly occurred significantly more in the ALN group than in the APN group (p = 0.022).ConclusionThe majority of clinical manifestations, laboratory findings, and microbiological features are similar between patients with ALN and APN. Clinicians should keep a high index of suspicion regarding ALN, particularly for those with ultrasonographic nephromegaly, initial higher CRP, nausea/vomiting, and fever for > 5 days after antimicrobial treatment

    Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Neocallimastix patriciarum</it> is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (<it>GHs</it>) produced by this anaerobic fungus.</p> <p>Results</p> <p>We have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to <it>N. patriciarum </it>to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative <it>GH </it>contigs and classified them into 25 <it>GH</it> families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the <it>GH1</it>, <it>GH3</it>, <it>GH5</it>, <it>GH6</it>, <it>GH9</it>, <it>GH18</it>, <it>GH43 </it>and <it>GH48 </it>gene families, which were highly expressed in <it>N. patriciarum </it>cultures grown on different feedstocks.</p> <p>Conclusions</p> <p>These <it>GH </it>genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.</p

    Hepatocyte Growth Factor Increases Osteopontin Expression in Human Osteoblasts through PI3K, Akt, c-Src, and AP-1 Signaling Pathway

    Get PDF
    BACKGROUND: Hepatocyte growth factor (HGF) has been demonstrated to stimulate osteoblast proliferation and participated bone remodeling. Osteopontin (OPN) is a secreted phosphoglycoprotein that belongs to the SIBLING family and is present during bone mineralization. However, the effects of HGF on OPN expression in human osteoblasts are large unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that HGF induced OPN expression in human osteoblasts dose-dependently. HGF-mediated OPN production was attenuated by c-Met inhibitor and siRNA. Pretreatment of osteoblasts with PI3K inhibitor (Ly294002), Akt inhibitor, c-Src inhibitor (PP2), or AP-1 inhibitor (curcumin) blocked the potentiating action of HGF. Stimulation of osteoblasts with HGF enhanced PI3K, Akt, and c-Src activation. In addition, incubation of cells with HGF also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the OPN promoter. HGF-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element was reduced by c-Met inhibitor, Ly294002, Akt inhibitor, and PP2. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the interaction between HGF and c-Met increases OPN expression in human osteoblasts via the PI3K, Akt, c-Src, c-Jun, and AP-1 signaling pathway
    corecore