31 research outputs found

    A Framework for Constrained Optimization Problems Based on a Modified Particle Swarm Optimization

    Get PDF
    This paper develops a particle swarm optimization (PSO) based framework for constrained optimization problems (COPs). Aiming at enhancing the performance of PSO, a modified PSO algorithm, named SASPSO 2011, is proposed by adding a newly developed self-adaptive strategy to the standard particle swarm optimization 2011 (SPSO 2011) algorithm. Since the convergence of PSO is of great importance and significantly influences the performance of PSO, this paper first theoretically investigates the convergence of SASPSO 2011. Then, a parameter selection principle guaranteeing the convergence of SASPSO 2011 is provided. Subsequently, a SASPSO 2011-based framework is established to solve COPs. Attempting to increase the diversity of solutions and decrease optimization difficulties, the adaptive relaxation method, which is combined with the feasibility-based rule, is applied to handle constraints of COPs and evaluate candidate solutions in the developed framework. Finally, the proposed method is verified through 4 benchmark test functions and 2 real-world engineering problems against six PSO variants and some well-known methods proposed in the literature. Simulation results confirm that the proposed method is highly competitive in terms of the solution quality and can be considered as a vital alternative to solve COPs

    A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm

    Get PDF
    This paper develops a particle swarm optimisation (PSO) based framework for multi-objective optimisation (MOO). As a part of development, a new PSO method, named self-adaptive PSO (SAPSO), is first proposed. Since the convergence of SAPSO determines the quality of the obtained Pareto front, this paper analytically investigates the convergence of SAPSO and provides a parameter selection principle that guarantees the convergence. Leveraging the proposed SAPSO, this paper then designs a SAPSO-based MOO framework, named SAMOPSO. To gain a well-distributed Pareto front, we also design an external repository that keeps the non-dominated solutions. Next, a circular sorting method, which is integrated with the elitist-preserving approach, is designed to update the external repository in the developed MOO framework. The performance of the SAMOPSO framework is validated through 12 benchmark test functions and a real-word MOO problem. For rigorous validation, the performance of the proposed framework is compared with those of four well-known MOO algorithms. The simulation results confirm that the proposed SAMOPSO outperforms its contenders with respect to the quality of the Pareto front over the majority of the studied cases. The non-parametric comparison results reveal that the proposed method is significantly better than the four algorithms compared at the confidence level of 90% over the 12 test functions

    Artificial Human Balance Control by Calf Muscle Activation Modelling

    Get PDF
    The natural neuromuscular model has greatly inspired the development of control mechanisms in addressing the uncertainty challenges in robotic systems. Although the underpinning neural reaction of posture control remains unknown, recent studies suggest that muscle activation driven by the nervous system plays a key role in human postural responses to environmental disturbance. Given that the human calf is mainly formed by two muscles, this paper presents an integrated calf control model with the two comprising components representing the activations of the two calf muscles. The contributions of each component towards the artificial control of the calf are determined by their weights, which are carefully designed to simulate the natural biological calf. The proposed calf modelling has also been applied to robotic ankle exoskeleton control. The proposed work was validated and evaluated by both biological and engineering simulation approaches, and the experimental results revealed that the proposed model successfully performed over 92% of the muscle activation naturally made by human participants, and the actions led by the simulated ankle exoskeleton wearers were overall consistent with that by the natural biological response

    Acceptability of and barriers to human papillomavirus vaccination in China:A systematic review of the Chinese and English scientific literature

    Get PDF
    INTRODUCTION: Widespread adoption of the human papillomavirus (HPV) vaccine will require population acceptance and tailoring of immunisation services to community needs and preferences. We examined peer‐reviewed publications on the acceptability of and barriers to the HPV vaccine across China. METHODS: We searched English (MEDLINE, Embase, and Web of Science) and Chinese (CNKI, VIP, Wanfang data) databases between 1 January 2006 and 31 December 2017. We adopted a narrative approach for data synthesis. RESULTS: We identified 73 studies. The overall median acceptability of HPV vaccine was 71.8% (Q1–Q3: 58.6%–81%). Low levels of acceptability (90%) and urban eastern regions (all <35%). Despite these regional variations, common barriers to HPV vaccine acceptance were concerns about vaccine safety, uncertainty over vaccine effectiveness, low perceived risk of cervical cancer and the price of the vaccine. The level of willingness to pay for the HPV vaccine (over 153 US dollars) was very low (<7%). CONCLUSION: The acceptability of and attitudes towards HPV vaccine vary by regions and populations across China. HPV vaccination programmes will need to tailor service delivery as well as information materials to take account of regional concerns

    FXR Acts as a Metastasis Suppressor in Intrahepatic Cholangiocarcinoma by Inhibiting IL-6-Induced Epithelial-Mesenchymal Transition

    Get PDF
    Background/Aims: Intrahepatic cholangiocarcinoma (ICC) is a complicated condition, with difficult diagnosis and poor prognosis. The expression and clinical significance of the farnesoid X receptor (FXR), an endogenous receptor of bile acids, in ICC is not well understood. Methods: Western blotting and immunochemical analyses were used to determine the levels of FXR in 4 cholangiocarcinoma cell lines, a human intrahepatic biliary epithelial cell line (HIBEpic) and 322 ICC specimens, respectively, while quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of FXR in cholangiocarcinoma cell lines. We evaluated the prognostic value of FXR expression and its association with clinical parameters. We determined the biological significance of FXR in ICC cell lines by agonist-mediated activation and lentivirus-mediated silence. IL-6 expression was tested by an enzyme-linked immunosorbent assay and flow cytometry. In vitro, cell proliferation was examined by Cell Counting Kit-8, migration and invasion were examined by wound healing and transwell assays; in vivo, tumor migration and invasion were explored in NOD-SCID mice. Results: FXR was downregulated in ICC cell lines and clinical ICC specimens. Loss of FXR was markedly correlated with aggressive tumor phenotypes and poor prognosis in patients with ICC. Moreover, FXR expression also had significant prognostic value in carbohydrate antigen 19-9 (CA19-9) negative patients. The expression of FXR was negatively correlated with IL-6 levels in clinical ICC tissues. FXR inhibited the proliferation, migration, invasion and epithelial mesenchymal transition (EMT) of ICC cells via suppression of IL-6 in vitro. Obeticholic acid, an agonist of FXR, inhibited IL-6 production, tumor growth and lung metastasis of ICC in vivo. Conclusions: FXR could be a promising ICC prognostic biomarker, especially in CA19-9 negative patients with ICC. FXR inhibits the tumor growth and metastasis of ICC via IL-6 suppression

    Comparison of Human Memory CD8 T Cell Responses to Adenoviral Early and Late Proteins in Peripheral Blood and Lymphoid Tissue

    Get PDF
    Treatment of invasive adenovirus (Ad) disease in hematopoietic stem cell transplant (SCT) recipients with capsid protein hexon-specific donor T cells is under investigation. We propose that cytotoxic T cells (CTLs) targeted to the late protein hexon may be inefficient in vivo because the early Ad protein E3-19K downregulates HLA class I antigens in infected cells. In this study, CD8+ T cells targeted to highly conserved HLA A2-restricted epitopes from the early regulatory protein DNA polymerase (P-977) and late protein hexon (H-892) were compared in peripheral blood (PB) and tonsils of naturally infected adults. In tonsils, epitope-specific pentamers detected a significantly higher frequency of P-977+CD8+ T cells compared to H-892+CD8+ T cells; this trend was reversed in PB. Tonsil epitope-specific CD8+ T cells expressed IFN-γ and IL-2 but not perforin or TNF-α, whereas PB T cells were positive for IFN-γ, TNF-α, and perforin. Tonsil epitope-specific T cells expressed lymphoid homing marker CCR7 and exhibited lower levels of the activation marker CD25 but higher proliferative potential than PB T cells. Finally, in parallel with the kinetics of mRNA expression, P-977-specific CTLs lysed targets as early as 8 hrs post infection. In contrast, H-892-specific CTLs did not kill unless infected fibroblasts were pretreated with IFN-γ to up regulate HLA class I antigens, and cytotoxicity was delayed until 16–24 hours. These data show that, in contrast to hexon CTLs, central memory type DNA polymerase CTLs dominate the lymphoid compartment and kill fibroblasts earlier after infection without requiring exogenous IFN-γ. Thus, use of CTLs targeted to both early and late Ad proteins may improve the efficacy of immunotherapy for life-threatening Ad disease in SCT recipients
    corecore