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Abstract

This paper develops a particle swarm optimisation (PSO) based framework for multi-objective optimisation (MOO).
As a part of development, a new PSO method, named self-adaptive PSO (SAPSO), is first proposed. Since the
convergence of SAPSO determines the quality of the obtained Pareto front, this paper analytically investigates the
convergence of SAPSO and provides a parameter selection principle that guarantees the convergence. Leveraging
the proposed SAPSO, this paper then designs a SAPSO-based MOO framework, named SAMOPSO. To gain a well-
distributed Pareto front, we also design an external repository that keeps the non-dominated solutions. Next, a circular
sorting method, which is integrated with the elitist-preserving approach, is designed to update the external repository
in the developed MOO framework. The performance of the SAMOPSO framework is validated through 12 benchmark
test functions and a real-word MOO problem. For rigorous validation, the performance of the proposed framework
is compared with those of four well-known MOO algorithms. The simulation results confirm that the proposed
SAMOPSO outperforms its contenders with respect to the quality of the Pareto front over the majority of the studied
cases. The non-parametric comparison results reveal that the proposed method is significantly better than the four
algorithms compared at the confidence level of 90% over the 12 test functions.

Keywords: Multi-objective optimisation, Self-adaptive particle swarm optimisation, Convergence of particle swarm
optimisation, Circular sorting method.

1. Introduction

Over the last few decades, the multiple-objective optimisation (MOO) has gained great attentions in different
areas such as manufacturing optimisation [1, 2] and environmental/economic dispatch [3]. Since there may exist
conflicts among different objectives in a MOO problem, it is difficult or even impossible to simultaneously optimise
all objectives in a MOO problem [4, 5, 6]. Therefore, the research of MOO often leads to a problem finding a set of5

non-dominated solutions [4, 7, 8]. The issue is that many real-world MOO problems may contain multiple complex
and nonlinear objectives and constraints [4, 5, 6]. With the complexity and nonlinearity of objectives and constraints,
finding a set of good quality non-dominated solutions become more challenging [4, 5, 6].

Thanks to their population-based nature and inherent parallelism, various evolutionary algorithms (EAs) have been
proposed for solving different MOO problems. For instances, a novel gradient-based water cycle algorithm (GWCA)10

with evaporation rate was developed by Alireza et. al. in [9]; an adaptive gradient descent-based local search in
memetic algorithm was presented to handle the optimal controller design problem by Aliasghar and Alireza in [10];
Li and Zhang developed a new version of multi-objective evolutionary method based on the differential evolution
algorithm (MOEA/D-DE) to solve MOO problems with complicated Pareto sets in [11] and a multi-objective memetic
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algorithm based on decomposition (MOEA/D) was proposed by Tan et. al. to solve different MOO problems in [12].15

Some other excellent works that concentrate on applying different EAs to tackle with different MOO problems can be
found in [3, 6, 13, 14].

As one of the most well-known and preferred EAs, particle swarm optimisation (PSO) has been rapidly and
widely applied to solve different single-objective and MOO problems in recent years: a novel adaptive particle swarm
optimisation (APSO) algorithm was developed by Alireza and Hamidreza in [15]; Yashar and Alireza proposed a novel20

fractional PSO-based memetic algorithm (FPSOMA) to solve trajectory control in [16]; a bare-bones multi-objective
PSO for the environmental/economic dispatch problem was developed in [17]; a modified binary PSO-based reliability
redundancy allocation method was introduced in [18] and a hybrid PSO-based MOO method was proposed to handle
the flexible job-shop scheduling problem in [19]. For more works focusing on developing different PSO-based MOO
methods, the reader can be referred to [5, 20, 21, 22].25

Nevertheless, since the basic PSO algorithm cannot well balance exploration and exploitation [23, 24], the Pareto
front searched by the basic PSO may converge to a false Pareto front [5]. This could limit the application of PSO
on MOO. It is of great importance to overcome this convergence issue to improve the quality of the Pareto front
and consequently enhance the performance of MOO [5, 17]. There have been numerous researches focusing on
overcoming the typical drawback of the basic PSO [9, 23, 24, 25, 16, 26]. From these studies, it is clearly evident30

that adjusting the three control parameters, i.e., the inertial weight, the cognitive and social acceleration parameters,
is a powerful remedy to the convergence issue in PSO. The three control parameters of PSO influence its exploration
and exploitation capabilities and thus determine its convergence property. Therefore, it is essential to address and
guarantee the convergence of PSO when adjusting the three parameters for improving PSO [21, 27, 28]. However, like
in most of the stochastic approaches, the stochastic nature of PSO imposes difficulties on the analytical investigation35

of its convergence [29].
This paper first develops a novel self-adaptive PSO algorithm, called self-adaptive PSO (SAPSO). The main focus

of the development is to alleviate the convergence issue of the basic PSO through fine-tuning the three main control
parameters. The new self-adaptive strategy proposed adjusts the three control parameters of particles in SAPSO to
well balance the trade-offs between exploration and exploitation. In the proposed self-adaptive strategy, the search of40

particles leverages not only the relative importance between exploration and exploitation over iterations, but also the
information of the solution space. As discussed, since the convergence of PSO is a paramount issue in the context
of MOO, this paper theoretically analyses the convergence of SAPSO and proposes a parameter selection principle,
guaranteeing the convergence of SAPSO.

Then, this paper develops a MOO framework, named self-adaptive multi-objective PSO (SAMOPSO), based on45

the SAPSO algorithm proposed. Similar to the most currently existing PSO-based MOO approaches, an external
repository is designed in the MOO framework to save the non-dominated personal best solutions of particles. For
obtaining a well-distributed Pareto front, we introduce a circular sorting method, which is combined with the elitist-
preserving approach [4] and updates the external repository.

The performance of the proposed approach is validated through 12 well-known MOO benchmark test functions50

and a real-world engineering problem. For rigorous verification, the performance of the proposed approach is com-
pared with those of four well-established MOO approaches, namely NSGA-II [4], TV-MOPSO [18], BMOPSO [30]
and MOEA/D [31]. The performance comparison is based on five different MOO performance metrics. The simu-
lation results confirm that the proposed approach outperforms its contenders in terms of the quality of the obtained
Pareto fronts over the majority of the cases studied. The analysis results of non-parametric statistical comparison also55

verify that the proposed method performs significantly better than the other four MOO methods with the confidence
level of 90% for the 12 benchmark test functions. Furthermore, the computation time of the proposed approach is
comparable with those of its counterparts in all the test problems.

The remainder of this paper is organised as follows. Section 2 introduces the proposed SAPSO and investigates its
convergence properties. The proposed SAPSO-based MOO framework is described in Section 3. Section 4 performs60

the numerical simulations and discusses its results. Conclusions of this study are provided in Section 5.
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2. Particle swarm optimisation (PSO)

2.1. Review of the basic PSO
Inspired by birds flocking and fish schooling, Kennedy and Eberhart first proposed PSO in 1995. The original aim

of the basic PSO algorithm is to reproduce the social interactions among agents to solve some complex optimisation65

problems [29]. Each agent in PSO is called a particle and associated with a velocity, which is dynamically adjusted
depending on its own flight experience and those of its companions. Therefore, each particle is attracted toward a
stochastically weighted average of its personal best position and the global best position of the swarm. In the basic
PSO algorithm, from iteration k to k+1, each particle updates its velocity and position as follows:

V k+1
m = wV k

m + c1r1(pbestk
m−Xk

m)+ c2r2(gbest−Xk
m) (1)

70

Xk+1
m = Xk

m +V k+1
m (2)

where w is a real coefficient denoting the inertia weight. c1 and c2 are two positive real coefficients representing the
cognitive and social acceleration parameters, respectively. r1 and r2 are two random numbers uniformly distributed
in [0,1]. pbestk

m denotes the personal best position of the mth particle at iteration k. gbest denotes the global best
position of the swarm.

2.2. The proposed SAPSO75

When using PSO to solve an optimisation problem, it is essential to properly control the exploration and exploita-
tion capabilities of particles to efficiently find the global optimum [23, 24, 25]. Ideally, on one hand, the exploration
capability needs to be facilitated in the early stage of the evolution, so that particles can wander through the entire
solution space, rather than clustering around the current population-best solution [23, 24, 25]. On the other hand, the
exploitation capability is required to be promoted in the late stage of the evolution, so that particles can focus on the80

local search to increase the possibility of finding optimal solutions [23, 24, 25].
It is well known that the exploration and exploitation capabilities of PSO heavily depend on the three control

parameters of particles. The basic philosophies concerning how the three control parameters influence such two
abilities of PSO can be summarised as follows: (1) a large inertia weight enhances exploration, while a small inertia
weight facilitates exploitation [23, 24, 25]; (2) a large cognitive component, compared with the social component,85

results in wandering of particles through the entire search space, which thus strengthens exploration [23, 24, 25]; (3) a
large social component, compared with the cognitive component, leads particles to a local search, which consequently
intensifies the exploitation capability [23, 24, 25].

Although MOO generally aims at obtaining a set of non-dominated solutions rather than a single optimal solution,
how to achieve a good balance between the exploration and exploitation capabilities of PSO also remains a key issue90

in finding better non-dominated solutions [5, 32]. Focusing on enhancing the performance of PSO, this paper develops
a new PSO algorithm, called SAPSO. The main purpose of the development of SAPSO is to improve the performance
of SAPSO by tuning its three control parameters in a way well balancing the exploration and exploitation capabilities
of particles. The proposed SAPSO is then integrated into MOO to find high-quality non-dominated solutions. For
fine-tuning the three control parameters, we propose a novel self-adaptive strategy as:95

wk+1
m = (wmax−wmin)exp(−δwk

βm
)+wmin (3)

ck+1
1m = (c1s− c1 f )exp(−δc1k

βm
)+ c1 f (4)

ck+1
2m = (c2s− c2 f )exp(

δc2k
βm

)+ c2 f (5)

δw =
wmax−wmin

kmax
(6)

δc1 =
c1s− c1 f

kmax
(7)
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δc2 =
c2s− c2 f

kmax
(8)

100

βm =
||V k−1

m ||+ ||V k
m||

2||V k−1
m ||+4

(9)

where wmax and wmin are the upper and lower bounds of the inertia weight, respectively. c1s and c1 f are the initial
and final values of the cognitive acceleration parameter. c2s and c2 f denote the initial and final values of the social
acceleration parameter. kmax denotes the maximum iteration number. ||V k−1

m || and ||V k
m|| represent the L2-norm of

the velocity vector of the mth particle at iterations (k−1) and k, respectively. 4 is a sufficiently small positive real
number (4= 1e−25 in this paper). Note that c1s > c1 f and c2s < c2 f in the self-adaptive strategy proposed.105

2.3. Parametric analysis for SAPSO

From Eqns. (3)-(5), it clear that w and c1 decrease (c2 increases) as the iteration number k increases. Therefore,
based on the aforementioned basic philosophies, SAPSO is likely to start the search with a high exploration tendency
in the early stage of the evolution. As the two parameters decrease over time, the exploitation capability of SAPSO
becomes favored in the late stage of the evolution. Note that, following the updating rule for a fixed βm, the balance110

between exploration and exploitation in SAPSO varies only with respect to the iteration number k.
Apart from the iteration number k, the balance of the search in SAPSO is also adapted by the additional parameter

βm. From Eqns. (3)-(4), it is trivial that the changes in w and c1 become smaller as βm becomes larger. On the other
hand, it is clear from Eq. (5) that the variation in c2 becomes larger as the βm value increases. This implies that, for a
large value of βm, the exploration capability tends to be more dominant. In contrast, the exploitation capability takes115

over the exploration ability more quickly as βm decreases.
Eqn. (9) indicates that βm increases as ||V k

m|| becomes relatively larger than ||V k−1
m ||, i.e., the difference between

the two consecutive positions of particle m gets bigger. In such a case where the distance between the two positions
of the particle becomes larger, it is logical to keep the exploration capability in order not to miss potentially impor-
tant solution space during the search. In the case where βm is relatively smaller, it is also desirable to promote the120

exploitation capability of SAPSO to increase the possibility of finding optimal solutions. This exactly complies with
the tendency of changes in the three control parameters of the proposed self-adaptive strategy in SAPSO.

By utilising the proposed self-adaptive strategy, the three control parameters of particles in SAPSO can be adjusted
in a way complying with the basic philosophies of the PSO development. Consequently, the proposed SAPSO is
expected to improve the ability in finding high-quality solutions. Fig. 1 demonstrates the tendency of these changes in125

the three control parameters with respect to different values of βm. Note that wmax = 0.9, wmin = 0.1, c1s = c2 f = 2.5,
c1 f = c2s = 0.5 and kmax = 100 in this demonstration.
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(a) Changes of w under different βm (b) Changes of c1 under different βm

(c) Changes of c2 under different βm

Fig. 1. Changes of the three control parameters under different βm in SAPSO

2.4. Analysis of trajectory in SAPSO

This subsection first analytically investigates the convergence of SAPSO. Then, a parameter selection principle
guaranteeing the convergence of SAPSO is proposed.130

2.4.1. Convergence analysis of SAPSO
Since each dimension of velocity and position vectors of each particle is updated independently from the others

in Eq. (1) and Eq. (2), SAPSO can be simplified into a one-dimensional case for the analysis of its convergence
property. For simplicity, we omit the subscript m in Eq. (1) and Eq. (2). Then, the moving rules of particles in the
one-dimensional SAPSO can be rewritten into a matrix form:135 [

X(k+1)
V (k+1)

]
= A

[
X(k)
V (k)

]
+BP (10)

where

A =

[
1−φ w
−φ w

]
(11)

B = [φ φ ]T (12)

φ = φ1 +φ2 (13)

φ1 = c1r1 (14)
140

φ2 = c2r2 (15)

P =
φ1 · pbest +φ2 ·gbest

φ1 +φ2
(16)
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Solving |λE−A|= 0 , where E is the identity matrix with the same size of A, the characteristic equation to the system
Eq. (10) is derived as:

λ
2− (w+1−φ)λ +w = 0 (17)

where two roots, denoted by λ1,2, are obtained as:

λ1,2 =
1+w−φ ±

√
(1+w−φ)2−4w
2

(18)

In the context of the dynamic system theory, the necessary and sufficient condition for the convergence of the145

system represented by Eq. (10) is that magnitudes of λ1,2 are less than 1 [33]. Thus, the system given by Eq. (10)
converges if and only if:

Max{|λ1| , |λ2|}< 1 (19)

From Eq. (18), it is clear that λ1,2 are either two real numbers or complex conjugates. Therefore, we investigate
the convergence property in the two cases.
Case 1. λ1,2 are complex numbers, i.e. λ1,2 ∈ C.150

Lemma 1. In the system represented by Eq. (10), λ1,2 ∈ Cif and only if:{
w−2

√
w+1 < φ < w+2

√
w+1

w≥ 0 (20)

Proof. From Eq. (10), it is clear that:

λ1,2 ∈ C⇔ (1+w−φ)2−4w < 0 (21)

Solving (21) by the classical mathematical approach, Lemma 1 can be easily proved.

Now, let us find conditions on φ and w guaranteeing the convergence of the system given by Eq. (10) for λ1,2 ∈C.
It is trivial that the system Eq. (10) converges if and only if Max{|λ1| , |λ2|}< 1.155

Lemma 2. For λ1,2 ∈ C, the system given by Eq. (10) converges, if and only if:{
w−2

√
w+1 < φ < w+2

√
w+1

0≤ w < 1 (22)

Proof. Note that the absolute value of a complex number Z can be computed as |Z| =
√

Z2
r +Z2

c , where Zr and Zc
denote the real and imaginary parts of Z. Hence, for λ1,2 ∈ C, we have:

Max{|λ1| , |λ2|}= |λ1|= |λ2|=
√

w (23)

Therefore:
Max{|λ1| , |λ2|}< 1⇔

√
w < 1 (24)

For λ1,2 ∈C, Eq. (20) must hold according to Lemma 1. From the two conditions, i.e. Eq. (20) and Eq. (24) , the160

system represented by Eq. (10) converges, if and only if:{
w−2

√
w+1 < φ < w+2

√
w+1

0≤ w < 1 (25)

Case 2. λ1,2 are two real numbers, i.e. λ1,2 ∈ R.
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Lemma 3. For the system given by Eq. (10), λ1,2 ∈ R if and only if:{
φ ∈ R for w < 0
φ ≤ w−2

√
w+1 or φ ≥ w+2

√
w+1 for w≥ 0 (26)

Proof. For the system in Eq. (10), it is clear that:165

λ1,2 ∈ R⇔ (1+w−φ)2−4w≥ 0 (27)

Solving the right-hand side of Eq. (27) using the classical approach completes the proof.

Let us now investigate φ and w conditions for the convergence guarantee in Case 2. From Eq. (18) and Eq. (19),
it is trivial, for λ1,2 ∈ R, that the condition Max{|λ1| , |λ2|}< 1 holds if and only if:

−1 <
1+w−φ ±

√
(1+w−φ)2−4w
2

< 1 (28)

Hence:
−3−w+φ <±

√
(1+w−φ)2−4w < 1−w+φ (29)

For λ1,2 ∈ R, it is obvious that:170

(28)⇔
{
−3−w+φ <−

√
(1+w−φ)2−4w√

(1+w−φ)2−4w < 1−w+φ
(30)

Solving the right-hand side inequalities in Eq. (30), we have:

(28)⇔
{

2w+2−φ > 0
φ > 0 (31)

Therefore, it is clear that, for λ1,2 ∈ R, the system in Eq. (10) converges if and only if:{
0 < φ < 2w+2, −1 < w < 0
0 < φ ≤ w−2

√
w+1 or w+2

√
w+1≤ φ < 2w+2, 0≤ w < 1 (32)

Considering Case 1 and Case 2 together, the system represented by Eq. (10) converges if and only if:{
0 < φ < 2w+2
−1 < w < 1 (33)

where φ = φ1 +φ2 = c1r1 + c2r2.
It is important to notice that the condition given by Eq. (33) is the necessary and sufficient condition for the175

convergence of SAPSO. The convergence region denoted by Eq. (33) is shown in Fig. 2. For the parameter selection
that locates w and φ in the convergence region given in Eq. (3), the trajectory convergence can be guaranteed in
SAPSO.
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Fig. 2. The convergence region for SAPSO

2.4.2. The equilibrium point of SAPSO
In the previous subsection, the convergence property of SAPSO is analytically investigated. Now, the remaining180

task is to find the equilibrium point of SAPSO. Note that the equilibrium point is a stable point, to which particles
converge. Calculating limits on both sides of Eq. (10) gives:{

lim
k→∞

X(k+1) = w lim
k→∞

V (k)+φ lim
k→∞

(P−X(k))

lim
k→∞

V (k+1) = lim
k→∞

X(k)+ lim
k→∞

V (k) (34)

When SAPSO converges, it is clear that lim
k→∞

X(k+1)= lim
k→∞

X(k) and lim
k→∞

V (k+1)= lim
k→∞

V (k). Thus, substituting

these two equations into Eq. (34), yields: lim
k→∞

X(k) = P =
φ1 · pbest +φ2 ·gbest

φ1 +φ2
lim
k→∞

V (k) = 0
(35)

where φ1 = c1r1 and φ2 = c2r2.185

2.4.3. Convergence behaviour of particles in SAPSO
Before particles converge to the equilibrium point given in Eq. (35), they may exhibit different convergence

behaviours depending on values of w and φ . Four typical convergence behaviours of particles in SAPSO are shown in
Fig. 3.

A non-oscillatory behaviour as shown in Fig. 3(a) leads particles to search only on one side of the equilibrium190

point. Particles exhibit the non-oscillatory convergence behaviour when λ1 and λ2 are two real roots and at least one of
them is positive, which is equivalent to 0≤ (1+w−φ)2−4w and 0 < 1+w−φ . The harmonic oscillation behaviour
demonstrated in Fig. 3(b) occurs in the case where λ1 and λ2 are two complex roots, i.e. (1+w− φ)2− 4w < 0.
Particles present zigzagging convergence behaviour shown in Fig. 3(c) when at least one of λ1 and λ2, has a negative
real part, which is equal to w < 0 or 1+w−φ < 0. The combined harmonic with zigzagging behaviour illustrated in195

Fig. 3(d) combines the harmonic and the zigzagging behaviours, which thus emerges when at least two complex λ1
and λ2 roots has a negative real part, that is (1+w−φ)2−4w < 0∩w < 0∪ (1+w−φ)2−4w < 0∩1+w−φ < 0.

If boundaries of coefficients associated with these convergence behaviours are known beforehand, one may easily
design an adaptive method to change values of these coefficients, so that the convergence of PSO can be guaranteed
and the quality of the final solution can be improved.200

8



(a) Non-oscillatory convergence (b) Harmonic convergence

(c) Zigzagging convergence (d) Harmonic combined with zigzagging

Fig. 3. Convergence behaviour of particles in SAPSO

2.4.4. Convergence property of SAPSO with its stochastic nature
Due to its stochastic nature, it is difficult to rigorously establish an exact relationship between the stochastic nature

and the convergence of SAPSO. However, one can still analyse the convergence property of SAPSO considering the
bound of stochastic numbers used in SAPSO. Note that the stochastic nature of SAPSO is attributed to the existence
of two random numbers r1 and r2.205

Since φ = φ1 +φ2 = c1r1 + c2r2, the necessary and sufficient condition given by Eq. (33) can be rewritten as:{
0 < c1r1 + c2r2 < 2w+2
−1 < w < 1 (36)

Lemma 4. SAPSO converges if:  2w+2 > c1 + c2
−1 < w < 1
c1,c2 > 0

(37)

Proof. Because c1 and c2 are two positive parameters, and r1 and r2 are two random numbers uniformly distributed
in [0,1], it is trivial that c1 ≥ c1r1 and c2 ≥ c2r2. Therefore: 2w+2 > c1 + c2

−1 < w < 1
c1,c2 > 0

⇒
{

0 < r1c1 + r2c2 < 2w+2
−1 < w < 1 (38)

Since the right-hand side inequality in Eq. (38) is the necessary and sufficient condition for the convergence of210
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SAPSO, it is trivial that Lemma 4 holds.

2.4.5. Parameter selection principle in SAPSO
The following lemma provides a parameter selection principle, i.e. how to set the initial and final values of w, c1

and c2, to guarantee the convergence in SAPSO.

Lemma 5. SAPSO converges if the initial and final values of the three control parameters of each particle satisfy the215

following:  2wmin +2 > c1s + c1 f
1 > wmax > wmin >−1
c1s = c2 f > c1 f = c2s > 0

(39)

Proof. When c1s = c2 f and c1 f = c2s, it is clear from Eqs. (4)-(7) that c1 + c2 = c1s + c1 f for any particle at any
iteration in SAPSO. From Eqs. (3)-(5), it is trivial that wmin ≤ w ≤ wmax, c1 f ≤ c1 ≤ c1s and c2s ≤ c2 ≤ c2 f for any
particle at any iteration in SAPSO. Therefore: 2wmin +2 > c1s + c1 f

1 > wmax > wmin >−1
c1s = c2 f > c1 f = c2s > 0

⇒

 2w+2 > c1 + c2
−1 < w < 1
c1,c2 > 0

(40)

The right-hand side inequality in Eq. (40) is the sufficient condition for the convergence in SAPSO.220

Lemma 5 implies that the convergence condition in SAPSO can be readily satisfied by setting the initial and final
values of the three control parameters. Fig. 4 shows the convergence trajectories of the position and velocity of the
particle under the suggested parameter selection: wmax = 0.9, wmin = 0.1, c1s = c2 f = 2 and c1 f = c2s = 0.1.

(a) Position trajectory (b) Velocity trajectory

Fig. 4. Convergence position and velocity trajectories of the particle in SAPSO under the suggested parameter selection

3. SAPSO-based MOO framework

3.1. The generality and some basic concepts of MOO225

Generally, a MOO problem is to optimise a set of objectives subjecting to some equality/inequality constraints,
which can be mathematically described as follows:

Optimize : F(x) = [ f1(x), f2(x), ..., fQ(x)] (41)

Subject to :


hi(x) = 0 i = 1,2, ...,CN1 (42)
g j(x)< 0 j = 1,2, ...,CN2 (43)

xl
k ≤ xk ≤ xu

k k = 1,2, ...,n (44)

10



where fd (1 ≤ d ∈ N ≤ Q) denotes the dth objective. Q is the total number of objectives and x = [x1,x2, ...,xn] is
decision variable vector. n is the total number of decision variables. hi(x) denotes the ith equality constraint and CN1
is the number of equality constraints. g j(x) represents the jth inequality constraint and CN2 denotes the number of230

inequality constraints. xl
k and xu

k represent the lower and upper bounds of the kth decision variable, respectively.
For the completeness, some basic concepts of MOO stated in [6] are reproduced , especially for the minimisation

problem.
Pareto dominance: Solution S1 is said to dominate solution S2, denoted as S1 � S2, if and only if fd(S1)≤ fd1(S2)

for all d ∈ [1,2, ...,Q] and ∃d ∈ [1,2, ...,Q] such that fd(S1)< fd(S2).235

Non-dominated solution: Solution S is called a non-dominated solution (also called Pareto-optimal solution) if
there exists no solution that can dominate solution S.

Pareto set: The set of all non-dominated solutions is called the Pareto set.
Pareto front: The image of the Pareto set in the objective space is called the Pareto front.

3.2. Implementation of SAPSO for MOO240

When using PSO to solve MOO problems, there are some key issues need to be addressed; (1) how to handle
constraints of the MOO problem; (2) how to update the global and personal best solutions of particles; (3) how to
keep the non-dominated solutions found by particles; (4) how to update the obtained non-dominated solution set.
This subsection first addresses these mentioned key issues. Then, the proposed SAPSO-based MOO framework i.e.,
SAMOPSO, is described at the end of this subsection.245

3.2.1. Handling constraints of MOO
Thanks to its simplicity and popularity, the constraint handling approach proposed in [34] is applied to handle

constraints of the MOO problems. In this approach, the constraint violation degree of the mth solution is calculated
as [34]:

violm =
CN1

∑
i=1
|hi(x)|+

CN2

∑
j=1

max(0,g j(x)) (45)

where CN1, hi(x), CN2 and g j(x) have same definitions as those in Eqs. (42)-(43). |hi(x)| denotes the magnitude of250

hi(x).
After calculating the constraint violation degree and fitness values of each solution, the constrained dominance

rule described in [22] is implemented to select the non-dominated solution between any two candidate solutions in
SAMOPSO. The constrained dominance rule can be summarised as follows: (1) for any two solutions with different
constraint violation degrees, the solution with smaller constraint violation degree dominates the solution with larger255

constraint violation degree; (2) for any two solutions with the same constraint violation degree, the precise Pareto
dominance relationship described in the definition of “Pareto dominance” in Subsection 3.1 is used to select the
non-dominated solution between those two candidate solutions.

It is clear that the constrained dominance rule considers infeasible solutions since they may still contain some
valuable information of the solution space [22]. This could diversify the search for the non-dominated solutions and260

reduce the possibility of missing important part of the solution space in the search. Consequently, it could increase the
chance of finding the high-quality non-dominated solutions[22]. Note that, unless otherwise specified, the constrained
dominance rule is applied to determine and select the non-dominated solution between any two candidate solutions in
the developed SAMOPSO framework.

In the SAMOPSO framework proposed, the boundary constraints of each decision variable, given by Eq. (44),265

is handled using a saturation strategy: the decision variable xk for all k ∈ {1, · · · ,n} applies the following saturation
strategy [18]:

xk =

 xl
k if xk < xl

k
xu

k if xk > xu
k

xk otherwise
(46)
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3.3. Updating the personal and global best solutions of particles
The personal and global best solutions in PSO-based MOO approaches are non-trivial from a set of non-dominated

solutions generated. In this subsection, we address how to update the personal and global best solutions in our MOO270

framework.
The personal best solution of a particle is referred to the best position that the particle searched so far and can

be viewed as the memory of the particle. The proposed MOO framework utilises the conventional method applied in
some other MOO research literature such as [5, 18, 21, 22] to update the personal best solution of each particle. In the
conventional method, the personal best solution and the current solution of the particle are compared with each other275

at each iteration. If the personal best solution of a particle dominates the current solution of the particle, the personal
best solution is then kept; otherwise, the current solution becomes the personal best solution [5, 18, 21, 22].

Most of PSO-based MOO methods designs an external repository or archive to save the non-dominated solutions
found [5, 18, 21, 22]. In the framework proposed in this paper, we also design a fixed-size external repository to save
the non-dominated solutions. In addition, to efficiently determine the search directions of particles, the global best280

solution of each particle is selected from the external repository using the geographically-based method [5].
In the geographically-based method [5], the search objective explored so far is firstly mapped into different grids.

Then, the currently-found non-dominated solutions are located into a coordinate system using these girds, where each
solution’s coordinates are defined based on its values of objective functions. After selecting a grid based on a density
estimation operator, a non-dominated solution located in this grid is randomly selected as the global best solution [5].285

Note that, in the density estimation operator, the more non-dominated solutions a grid contains, the less likely the
grid is selected. This implies that the areas containing less non-dominated solutions are more likely to be selected
[5]. Hence, particles are encouraged to explore the less crowed solution space. Consequently, we can increase the
possibility to search less explored solution spaces and the chance of finding high-quality non-dominated solutions [5].
For more details about the geographically-based method, the reader is referred to [5].290

3.4. Designing and updating the external repository
Because multiple non-dominated solutions are produced at each iteration in the developed MOO framework, the

size of the repository could quickly increase if an external repository is designed to keep all the non-dominated
solutions found. This could significantly increase the computation load in updating the repository as the current
solutions of particles should be compared to the all non-dominated solutions saved in the repository. To mitigate this295

issue, the size of the repository in the proposed SAMOPSO is fixed as in [5, 18, 21, 22]. For the repository with a
fixed size, how to update the repository becomes important. Therefore, how our SAMOPSO updates the repository
will be described in this subsection.

To update the external repository, we propose to combine the circular sorting approach with the elitist-preserving
approach [4]. In the circular sorting method, the newly-found solution of a particle is first compared with its personal300

best solution. If the new solution is non-dominated by the personal solution, it is allowed to be considered as a
potential element of the repository.

Note that it is unnecessary to consider all new solutions as potential elements of the repository since they might
be dominated by their personal best solutions. Therefore, sorting new solutions of individual particles by comparing
them with their personal best solutions can relax the computational complexity in updating the repository.305

The new solution sorted is then compared with all non-dominated solutions saved in the repository. The new
solution is allowed to enter the repository if: (a) it is non-dominated by all non-dominated solutions in the repository
or (b) it dominates any non-dominated solution saved in the repository (in this case, the dominated solutions are
removed from the repository).

If the repository is full, the elitist-preserving approach [4] is applied. The elitist-preserving approach prunes the310

repository to obtain a size-equaled repository and a well-distributed Pareto front. The approach first sorts all non-
dominated solutions kept in the repository in an ascending order based on their function values. Then, the crowding
distance of each non-dominated solution is calculated according to the objective functions of each non-dominated
solution and those of its neighbors. Finally, Nrep non-dominated solutions with largest crowding distance are kept
in the repository. Note that Nrep denotes the predefined size of the repository. The larger crowding distance the315

non-dominated solutions have, the wider they are spread. Therefore, keeping the most sparely-spread non-dominated
solutions in the repository can provide not only a size-equaled repository, but also a widely-distributed Pareto front
[4, 6]. For more details of the elitist-preserving approach, the reader is referred to [4].
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3.5. Algorithmic scheme of SAMOPSO

The algorithmic scheme of SAMOPSO is summarised in Table 1. In the scheme, NP, k and kmax represent the size320

of the swarm, the current iteration number and the maximum iteration number of the evolution, respectively.

Table 1. The SAPSO-based MOO (SAMOPSO) framework

1: Set the simulation parameters and randomly generate an initial swarm
2: Calculate cost functions and constraint violation degree of each particle at the initial iteration
3: Set each particle’s initial solution of as its pbest at the initial iteration
4: Update the repository by the circular sorting method at the initial iteration
5: if the repository is full do
6: Prune some solutions from the repository by the elitist-preserving approach
7: end if
8: while k ≤ kmax do
9: for m = 1 : NP do
10: Select gbest for particle m from the repository by the geographically-based method
11: Vm← wVm + c1r1(pbestm−Xm)+ c2r2(gbest−Xm) % update velocity of particle m
12: Xm← Xm +Vm % update position of particle m
13: Modify each dimension of Xm using the saturation strategy defined by Eq. (46)
14: Calculate cost functions of particle m

15: violm =
CN1

∑
i=1
|hi(x)|+

CN2

∑
j=1

max(0,g j(x)) % calculate constraint violation degree of particle m

16: Update w, c1 and c2 of particle m according to Eqs. (3)-(9)
17: if Xm � pbestm or Xm is non-dominated to pbestm do
18: pbestm = Xm
19: Move pbestm into the repository and update the repository by the circular sorting method
20: end if
21: end for
22: if the repository is full do
23: Prune some solutions from the repository by the elitist-preserving approach
24: end if
25: k← k+1
26: end while
27: Output non-dominated solutions kept in the repository

4. Numerical Experiments

4.1. Description of evaluation metrics

To allow a quantitative assessment of the performance of different MOO methods, this paper adopts five widely-
accepted evaluation metrics: the number of non-dominated solutions (NNS) [5, 6, 18], error ratio (ER) [5, 6, 18],325

generation distance (GD) [5, 6, 18], space metric (SM) [5, 6, 18] and the computation time (CT) [5, 6, 18]. The first
four indices are mainly used to evaluate the quality of the obtained Pareto front [5, 6, 18]. NNS denotes the number
of real non-dominated solutions. The quality of the Pareto front obtained is better with a larger NNS [5, 6, 18]. ER
measures the non-convergence of the Pareto front toward the real Pareto front. The smaller the ER value is, the better
the convergence becomes. GD is a distance measure of the obtained non-dominated solutions from those in the real330

Pareto front. The quality of the obtained Pareto front improves as the GD values decreases. SM is used to measure the
uniformity in the spread of the Pareto front. The smaller the SM value becomes, the better the Pareto front solutions
spread. CT is the computer execution time, which, to some extents, reflects the computational complexity of the MOO
algorithm tested. Note that how to calculate these metrics is detailed in [5, 6, 18] .
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4.2. Simulations on benchmark test functions335

4.2.1. Description of benchmarks and compared MOO methods
In order to verify the proposed approach, its performance is evaluated using 12 well-known benchmark test func-

tions extracted from [35, 6, 11, 12, 36] and one real-world engineering problem: environmental/economic dispatch
(EED) problem. All benchmark test functions are described in Table 2. The performance of the proposed SAMOPSO
is compared with those of NSGA-II [4], TV-MOPSO [18], BMOPSO [30] and MOEA/D [31]. For rigorous validation,340

a Monte-Caro experiment with 30 runs is conducted for each test function. In addition, the non-dominated solutions of
each method are obtained after 400 iterations of 100 particles in each studied case. All considered MOO methods are
programmed by MATLAB 2012B software on a windows-8 personal computer with i3-2350@2.30-GHz and 2-GB
RAM. For all MOO algorithms tested, the size of the external repository is set to be 100. The simulation parameters
for SAMOPSO are given as: wmax = 0.9, wmin = 0.1, c1s = c2 f = 2.0 and c1 f = c2s = 0.1. These values are set based345

on the convergence analysis results discussed in Section 2.4.5. The simulation parameters for all compared methods
are extracted from their corresponding literature and summarised in Table 3.

Table 2. Benchmark test functions

Fun. Variable dimension Variable bounds Objective Function

F1 2 [0.1,1]∪ [0,5] Function CONSTR in Ref. [4]
F2 2 [0,π]n Function TNK in Ref. [4]
F3 2 [0.1,1]n Test Function 4 in Ref. [5]
UF1 30 [0,1]× [−1,1]n−1 Refer to Ref. [36]
UF2 30 [0,1]× [−1,1]n−1 Refer to Ref. [36]
UF3 30 [0,1]n Refer to Ref. [36]
ZDT1 30 [0,1]n Refer to Ref. [6]
ZDT3 30 [0,1]n Refer to Ref. [6]
DT LZ1 10 [0,1]n Refer to Ref. [35]
DT LZ2 10 [0,1]n Refer to Ref. [35]
DT LZ4 10 [0,1]n Refer to Ref. [35]
DT LZ5 10 [0,1]n Refer to Ref. [35]

Table 3. The simulation parameters for compared methods

Methods Parameter setting

NSGA-II Pc = 0.9, Pm = 0.1
BMOPSO JP = 0.001, α = 6
MOEA/D F = 0.5, Pc = 0.5
TV-MOPSO wmax = 0.7, wmin = 0.4, c1s = c2 f = 2.5, c1 f = c2s = 0.5

4.2.2. Simulation results on 12 benchmark test functions
The statistical results of the Monte-Carlo experiments with respect to the five performance metrics are reported in

Tables 4-8. In these tables, the best average results obtained with regarding to each metric are highlighted in boldface.350

Note that the Pareto fronts obtained by different MOO algorithms are depicted in Appendix.
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Table 4. Statistical results of NNS obtained by different methods for different test functions

Functions NNS Methods

SAMOPSO MOEA/D BMOPSO TV-MOPSO NSGA-II

F1 Best 6.50E+01 5.40E+01 3.60E+01 1.50E+01 1.90E+01
Average 5.38E+01 4.68E+01 2.39E+01 1.23E+01 7.80E+00
Worst 4.40E+01 3.90E+01 1.60E+01 8.00E+00 5.00E+00
Std. Dev. 5.35E+00 6.37E+00 6.52E+00 2.45E+00 4.26E+00

F2 Best 2.80E+01 2.00E+01 2.20E+01 2.80E+01 2.10E+01
Average 2.00E+01 1.74E+01 1.70E+01 1.83E+01 1.63E+01
Worst 1.40E+01 1.20E+01 1.10E+01 1.30E+01 1.10E+01
Std. Dev. 4.19E+00 2.27E+00 3.83E+00 5.10E+00 3.46E+00

F3 Best 9.90E+01 9.30E+01 7.70E+01 5.60E+01 5.50E+01
Average 9.56E+01 3.75E+01 4.78E+01 3.10E+01 2.20E+01
Worst 7.90E+01 1.10E+01 1.70E+01 9.00E+00 3.00E+00
Std. Dev. 6.11E+00 3.43E+01 2.38E+01 1.70E+01 2.17E+01

UF1 Best 3.50E+01 4.00E+00 4.00E+00 3.20E+01 3.00E+00
Average 2.67E+01 1.50E+00 1.00E+00 1.95E+01 8.00E-01
Worst 2.00E+01 0.00E+00 0.00E+00 2.00E+00 0.00E+00
Std. Dev. 4.67E+00 1.51E+00 1.15E+00 8.96E+00 1.32E+00

UF2 Best 4.90E+01 1.40E+01 1.80E+01 4.00E+00 1.00E+00
Average 2.53E+01 3.30E+00 3.80E+00 7.00E-01 3.00E-01
Worst 9.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. Dev. 1.25E+01 6.20E+00 5.33E+00 1.34E+00 4.83E-01

UF3 Best 6.90E+01 3.20E+01 3.00E+00 5.00E+00 0.00E+00
Average 2.35E+01 6.70E+00 5.00E-01 1.00E+00 0.00E+00
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. Dev. 2.16E+01 9.82E+00 2.26E-01 3.16E-01 0.00E+00

ZDT 1 Best 9.00E+01 2.90E+01 8.80E+01 2.00E+01 1.60E+01
Average 7.35E+01 1.22E+01 4.08E+01 9.60E+00 7.80E+00
Worst 4.30E+01 5.00E+00 1.10e+01 2.00E+00 3.00E+00
Std. Dev. 1.38E+01 6.75E+00 3.20E+01 6.28E+00 4.32E+00

ZDT3 Best 8.90E+01 1.90E+01 6.30E+01 1.80E+01 7.00E+00
Average 5.60E+01 1.34E+01 1.35E+01 9.90E+00 3.40E+00
Worst 4.30E+01 8.00E+00 9.00E+00 1.00E+00 1.00E+00
Std. Dev. 1.37E+01 4.25E+00 1.94E+01 5.86E+00 2.07E+00

DT LZ1 Best 3.00E+00 1.60E+01 1.00E+00 0.00E+00 0.00E+00
Average 7.00E-01 3.90E+00 1.00E-01 0.00E+00 0.00E+00
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. Dev. 1.06E+00 4.89E+00 3.16E-01 0.00E+00 0.00E+00

DT LZ2 Best 5.50E+01 5.70E+01 4.20E+01 1.80E+01 1.70E+01
Average 3.80E+01 3.56E+01 2.72E+01 1.41E+01 1.26E+01
Worst 2.50E+01 1.10E+01 1.60E+01 1.00E+01 0.00e+00
Std. Dev. 7.43E+00 8.68E+00 8.11E+00 2.85E+00 8.88E+00

DT LZ4 Best 8.90E+01 3.70E+01 5.70E+01 2.60E+01 5.00E+00
Average 2.21E+01 1.44E+01 1.88E+01 9.60E+00 1.30E+00
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. Dev. 2.76E+01 1.25E+01 1.63E+01 1.06E+01 1.83E+00

DT LZ5 Best 8.50E+01 1.80E+01 8.20E+01 1.50E+01 7.00E+00
Average 3.64E+01 7.20E+00 3.63E+01 6.10E+00 1.70E+00
Worst 2.30E+01 0.00E+00 1.20E+01 0.00E+00 0.00E+00
Std. Dev. 1.71E+01 6.80E+00 3.83E+01 4.77E+00 2.36E+00
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Table 5. Statistical results of ER obtained by different methods for different test functions

Functions ER Methods

SAMOPSO MOEA/D BMOPSO TV-MOPSO NSGA-II

F1 Best 3.50E-01 4.60E-01 6.40E-01 8.50E-01 8.10E-01
Average 4.62E-01 5.32E-01 7.61E-01 8.77E-01 9.22E-01
Worst 5.60E-01 6.10E-01 8.40E-01 9.20E-01 9.50E-01
Std. Dev. 5.35E-02 6.37E-02 6.53E-02 2.46E-02 4.26E-02

F2 Best 7.20E-01 8.00E-01 7.80E-01 7.20E-01 7.90E-01
Average 8.00E-01 8.26E-01 8.30E-01 8.17E-01 8.37E-02
Worst 8.60E-01 8.80E-01 8.90E-01 8.70E-01 8.90E-01
Std. Dev. 4.19E-02 2.27E-02 3.83E-02 5.09E-02 3.46E-02

F3 Best 1.00E-02 7.00E-02 2.30E-01 4.40E-01 4.50E-01
Average 4.40E-02 6.25E-01 5.22E-01 6.90E-01 7.80E-01
Worst 2.10E-01 8.90E-01 8.30E-01 9.10E-01 9.70E-01
Std. Dev. 6.11E-02 3.43E-01 2.37E-01 1.71E-01 2.17E-01

UF1 Best 6.50E-01 9.60E-01 9.60E-01 6.80E-01 9.70E-01
Average 7.33E-01 9.85E-01 9.90E-01 8.05E-01 9.92E-01
Worst 8.0E-01 1.00E+00 1.00E+00 9.80E-01 1.00E+00
Std. Dev. 4.67E-02 1.51E-02 1.15E-02 8.96E-02 1.32E-02

UF2 Best 5.10E-01 8.60E-01 8.20E-01 9.60E-01 9.90E-01
Average 7.47E-01 9.67E-01 9.62E-01 9.93E-01 9.97E-01
Worst 9.10E-01 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Std. Dev. 1.25E-01 6.20E-02 5.32E-02 1.34E-02 4.83E-03

UF3 Best 3.10E-01 6.80E-01 9.70E-02 9.50E-01 1.00E+00
Average 7.65E-01 9.33E-01 9.95E-02 9.90E-01 1.00E+00
Worst 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Std. Dev. 2.16E-01 9.82E-02 2.26E-03 3.16E-03 0.00E+00

ZDT 1 Best 1.00E-01 7.10E-01 1.20E-01 8.00E-01 8.40E-01
Average 2.65E-01 8.78E-01 5.92E-01 9.04E-01 9.22E-01
Worst 5.70E-01 9.50E-01 8.90E-01 9.80E-01 9.70E-01
Std. Dev. 1.38E-01 6.75E-02 3.20E-01 6.28E-02 4.32E-02

ZDT 3 Best 1.10E-01 8.10E-01 3.70E-01 8.20E-01 9.30E-01
Average 4.40E-01 8.66E-01 8.65E-01 9.01E-01 9.66E-01
Worst 5.70E-01 9.20E-01 9.10E-01 9.90E-01 9.90E-01
Std. Dev. 1.37E-01 4.25E-02 1.94E-01 5.86E-02 2.07E-02

DT LZ1 Best 9.70E-01 8.40E-01 9.90E-01 1.00E+00 1.00E+00
Average 9.93E-01 9.61E-01 9.99E-01 1.00E+00 1.00E+00
Worst 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Std. Dev. 1.06E-02 4.89E-02 3.16E-03 0.00E+00 0.00E+00

DT LZ2 Best 4.50E-01 4.30E-01 5.80E-01 8.20E-01 8.30E-01
Average 6.20E-01 6.44E-01 7.28E-01 8.59E-01 8.74E-01
Worst 7.50E-01 8.90E-01 8.40E-01 9.00E-01 1.00E+00
Std. Dev. 7.43E-02 8.68E-02 8.11E-02 2.85E-02 8.88E-02

DT LZ4 Best 1.10E-01 6.30E-01 4.30E-01 7.40E-01 9.50E-01
Average 7.79E-01 8.56E-01 8.12E-01 9.04E-01 9.87E-01
Worst 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Std. Dev. 2.76E-01 1.25E-01 1.63E-01 1.06E-01 1.83E-02

DT LZ5 Best 1.50E-01 8.20E-01 1.80E-01 8.50E-01 9.30E-01
Average 6.36E-01 9.28E-01 6.37E-01 9.39E-01 9.83E-01
Worst 7.70E-01 1.00E+00 8.80E-01 1.00E+00 1.00E+00
Std. Dev. 1.71E-01 6.80E-02 3.83E-01 4.77E-02 2.36E-02
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Table 6. Statistical results of GD obtained by different methods for different test functions

Functions GD Methods

SAMOPSO MOEA/D BMOPSO TV-MOPSO NSGA-II

F1 Best 4.90E-04 5.71E-04 6.79E-04 1.07E-03 1.34E-03
Average 6.29E-04 7.65E-04 1.75E-03 2.39E-03 2.49E-03
Worst 8.41E-04 9.51E-04 2.70E-03 5.30E-03 4.67E-03
Std. Dev. 1.02E-04 1.12E-04 6.33E-04 1.34E-03 1.02E-03

F2 Best 2.72E-04 2.63E-04 2.98E-04 2.75E-04 2.98E-04
Average 3.24E-04 3.59E-04 3.66E-04 3.58E-04 3.70E-04
Worst 4.01E-04 4.62E-04 4.64E-04 4.60E-04 6.82E-04
Std. Dev. 3.94E-05 5.28E-05 5.97E-05 5.79E-05 1.14E-04

F3 Best 3.90E-07 9.85E-05 6.17E-05 7.04E-05 2.69E-04
Average 3.17E-06 1.69E-02 2.42E-04 2.71E-02 3.07E-02
Worst 1.99E-05 1.20E-01 4.96E-04 1.39E-01 1.41E-01
Std. Dev. 6.39E-05 3.73E-02 1.58E-04 5.67E-02 5.29E-02

UF1 Best 5.90E-04 3.14E-03 5.74E-03 9.13E-04 5.81E-03
Average 1.33E-03 1.55E-02 2.91E-02 2.67E-03 3.32E-02
Worst 3.06E-03 3.83E-02 7.34E-02 9.20E-03 5.01E-02
Std. Dev. 9.31E-04 1.45E-02 2.42E-02 2.46E-03 1.54E-02

UF2 Best 7.57E-04 1.79E-03 1.67E-03 2.77E-03 2.45E-03
Average 1.07E-03 2.29E-03 2.20E-03 3.18E-03 4.13E-03
Worst 1.85E-03 2.76E-03 2.96E-03 3.66E-03 8.21E-03
Std. Dev. 3.21E-04 2.29E-03 4.46E-04 2.89E-04 1.72E-03

UF3 Best 3.81E-04 5.28E-04 6.84E-03 4.27E-03 5.56E-03
Average 1.63E-03 6.75E-03 1.63E-02 8.85E-03 1.69E-02
Worst 9.44E-03 2.72E-02 2.82E-02 1.43E-02 4.29E-02
Std. Dev. 2.78E-03 8.66E-03 6.88E-03 3.78E-03 1.12E-02

ZDT1 Best 1.56E-06 1.77E-04 2.01E-06 1.40E-04 1.68E-03
Average 5.29E-05 2.88E-04 2.43E-04 3.24E-04 2.99E-03
Worst 1.13E-04 4.22E-04 1.10E-03 6.34E-04 5.16E-03
Std. Dev. 4.20E-05 6.37E-05 3.41E-04 1.35E-04 1.17E-03

ZDT3 Best 2.89E-05 2.77E-04 2.75E-04 3.72E-05 3.01E-03
Average 8.94E-05 4.16E-04 3.87E-04 5.27E-04 7.96E-03
Worst 2.03E-04 6.01E-04 4.87E-04 1.82E-03 2.22E-02
Std. Dev. 4.99E-05 8.79E-05 6.87E-05 5.42E-04 5.86E-03

DT LZ1 Best 2.32E+00 2.18E-01 3.32E+00 3.68E+00 3.74E+00
Average 3.16E+00 1.72E+00 3.43E+00 3.99E+00 4.62E+00
Worst 3.86E+00 5.12E+00 5.21E+00 4.97E+00 5.70E+00
Std. Dev. 4.57E-01 1.42E+00 1.27E+00 3.63E-01 5.99E-01

DT LZ2 Best 9.97E-04 1.84E-03 2.48E-03 2.52E-03 6.31E-03
Average 2.17E-03 2.72E-03 3.20E-03 4.21E-03 7.75E-03
Worst 4.39E-03 3.60E-03 4.08E-03 6.25E-03 9.31E-03
Std. Dev. 1.17E-03 4.86E-04 4.88E-04 1.16E-03 9.13E-04

DT LZ4 Best 1.17E-03 3.46E-03 2.93E-03 3.63E-03 4.13E-03
Average 5.05E-03 8.29E-03 7.95E-03 1.68E-02 2.79E-02
Worst 1.77E-02 3.21E-02 1.25E-02 3.53E-02 4.61E-02
Std. Dev. 5.13E-03 1.02E-02 2.64E-03 9.99E-03 1.36E-02

DT LZ5 Best 8.08E-05 6.35E-04 1.46E-04 5.48E-04 1.16E-03
Average 2.81-04 1.36E-03 4.60E-04 1.68E-03 2.08E-03
Worst 6.05E-04 1.73E-03 9.41E-04 2.59E-03 3.77E-03
Std. Dev. 2.07E-04 3.24E-04 2.34E-04 5.84E-04 9.13E-04
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Table 7. Statistical results of SM obtained by different methods for different test functions

Functions SM Methods

SAMOPSO MOEA/D BMOPSO TV-MOPSO NSGA-II

F1 Best 4.11E-03 4.61E-03 4.15E-03 3.72E-03 3.88E-03
Average 5.23E-03 6.02E-03 7.23E-03 7.79E-03 8.97E-03
Worst 6.75E-03 7.35E-03 1.56E-02 1.79E-02 1.44E-02
Std. Dev. 7.95E-04 7.84E-04 3.59E-03 4.52E-03 3.20E-03

F2 Best 1.86E-03 1.88E-03 2.04E-03 1.86E-03 2.22E-03
Average 2.39E-03 2.63E-03 2.66E-03 2.59E-03 2.74E-03
Worst 3.01E-03 3.43E-03 3.73E-03 3.42E-03 3.77E-03
Std. Dev. 3.52E-04 5.67E-04 7.10E-04 5.09E-04 4.96E-04

F3 Best 3.82E-06 8.89E-04 5.87E-04 6.97E-05 2.08E-03
Average 3.01E-05 1.23E-01 1.94E-03 2.34E-01 2.76E-01
Worst 1.84E-04 1.04E+00 3.71E-03 1.19E+00 1.26E+00
Std. Dev. 5.96E-05 3.23E-01 1.13E-03 4.90E-01 4.68E-01

UF1 Best 4.45E-03 1.52E-02 1.90E-02 6.43E-03 2.02E-02
Average 1.16E-02 9.30E-02 1.56E-01 2.14E-02 2.13E-01
Worst 2.93E-02 2.39E-01 3.78E-01 6.28E-02 3.16E-01
Std. Dev. 9.05E-03 9.64E-02 1.36E-01 1.67E-02 1.03E-01

UF2 Best 6.33E-03 8.94E-03 9.92E-03 1.02E-02 2.21E-02
Average 8.69E-03 1.53E-02 1.47E-02 1.96E-02 2.61E-02
Worst 1.69E-02 2.04E-02 1.99E-02 3.18E-02 3.19E-02
Std. Dev. 3.15E-03 3.42E-03 3.58E-03 6.22E-03 3.09E-03

UF3 Best 3.14E-03 1.22E-02 1.61E-02 3.74E-03 3.36E-02
Average 1.19E-02 3.27E-02 7.60E-02 4.38E-02 1.01E-01
Worst 7.29E-02 6.23E-02 2.49E-01 1.72E-01 1.41E-01
Std. Dev. 2.16E-02 2.00E-02 7.61E-02 5.62E-02 3.84E-02

ZDT1 Best 1.49E-05 1.03E-03 1.93E-05 8.91E-04 7.18E-03
Average 4.74E-04 1.73E-03 1.03E-03 1.88E-03 1.23E-02
Worst 1.07E-03 2.62E-03 2.69E-03 3.31E-03 2.33E-02
Std. Dev. 3.72E-04 4.47E-04 9.83E-04 6.80E-04 5.01E-03

ZDT3 Best 2.78E-04 1.83E-03 1.49E-03 3.17E-04 1.01E-02
Average 7.59E-04 2.51E-03 2.48E-03 3.51E-03 2.55E-02
Worst 1.91E-03 3.36E-03 3.33E-03 1.27E-02 4.67E-02
Std. Dev. 4.68E-04 4.84E-04 4.74E-04 3.70E-03 1.30E-02

DT LZ1 Best 8.20E-01 2.60E+00 4.67E+00 6.43E+00 7.57E+00
Average 4.22E+00 4.03E+00 5.62E+00 6.56E+00 1.05E+01
Worst 8.17E+00 4.70E+00 7.27E+00 2.40E+01 1.48E+01
Std. Dev. 1.88E+00 6.08E-01 8.82E-01 6.97E+00 2.06E+00

DT LZ2 Best 8.59E-03 1.46E-02 1.98E-02 1.81E-02 3.85E-02
Average 1.82E-02 1.95E-02 2.32E-02 2.57E-02 5.17E-02
Worst 4.10E-02 2.34E-02 2.85E-02 3.35E-02 6.61E-02
Std. Dev. 1.17E-02 2.79E-03 2.96E-03 5.15E-03 7.77E-03

DT LZ4 Best 8.81E-03 2.20E-02 3.40E-03 2.53E-02 3.59E-02
Average 2.75E-02 5.81E-02 3.80E-02 6.95E-02 2.44E-01
Worst 7.45E-02 9.99E-02 1.11E-01 1.03E-01 3.98E-01
Std. Dev. 2.02E-02 2.88E-02 3.46E-02 2.26E-02 1.20E-01

DT LZ5 Best 7.79E-04 4.26E-03 1.37E-03 5.16E-03 6.51E-03
Average 1.05E-03 9.08E-03 3.79E-03 9.88E-03 1.12E-02
Worst 1.43E-03 1.08E-02 8.83E-03 1.65E-02 1.95E-02
Std. Dev. 2.22E-04 1.95E-03 2.14E-03 3.31E-03 3.83E-03
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Table 8. Statistical results of CT (seconds) obtained by different methods for different test functions

Functions CT Methods

SAMOPSO MOEA/D BMOPSO TV-MOPSO NSGA-II

F1 Best 8.14E+00 8.06E+00 1.58E+01 7.47E+00 9.16E+00
Average 1.21E+01 1.18E+01 1.82E+01 1.09E+01 1.24E+01
Worst 1.56E+01 1.52E+01 2.21E+01 1.32E+01 1.60E+01
Std. Dev. 1.05E+00 1.40E+00 1.97E+00 1.16E+00 1.31E+00

F2 Best 5.88E+00 5.66E+00 6.23E+00 5.15E+00 5.99E+00
Average 8.08E+00 7.99E+00 9.53E+00 7.72E+00 8.23E+00
Worst 9.72E+00 1.06E+01 1.33E+01 9.21E+00 1.11E+01
Std. Dev. 1.33E+00 1.47E+00 1.83E+00 1.42E+00 1.78E+00

F3 Best 6.78E+00 6.26E+00 7.57E+00 5.45E+00 6.90E+00
Average 8.53E+00 8.78E+00 1.08E+01 7.88E+00 9.88E+00
Worst 1.24E+01 1.02E+01 1.63E+01 9.91E+00 1.51E+01
Std. Dev. 1.01E+00 1.17E+00 1.95E+00 1.51E+00 1.85E+00

UF1 Best 3.04E+01 2.91E+01 3.57E+01 2.84E+01 3.31E+01
Average 3.68E+01 3.43E+01 4.23E+01 3.27E+01 3.98E+01
Worst 3.96E+01 3.75E+01 4.48E+01 3.51E+01 4.23E+01
Std. Dev. 2.09E+00 2.31E+00 1.82E+00 2.35E+00 2.01E+00

UF2 Best 3.12E+01 3.01E+01 3.76E+01 2.78E+01 3.50E+01
Average 3.59E+01 3.31E+01 4.31E+01 3.31E+01 4.25E+01
Worst 3.98E+01 3.79E+01 4.68E+01 3.65E+01 4.41E+01
Std. Dev. 2.22E+00 3.01E+00 3.57E+00 2.71E+00 3.05E+00

UF3 Best 3.24E+01 3.22E+01 3.98E+01 2.95E+01 3.74E+01
Average 3.79E+01 3.52E+01 4.52E+01 3.52E+01 4.45E+01
Worst 4.12E+01 3.98E+01 4.83E+01 3.83E+01 4.63E+01
Std. Dev. 2.51E+00 3.17E+00 3.68E+00 2.89E+00 3.11E+00

ZDT1 Best 2.92E+01 3.01E+01 3.52E+01 2.58E+01 3.37E+01
Average 3.41E+01 3.31E+01 4.13E+01 3.16E+01 4.09E+01
Worst 3.73E+01 3.79E+01 4.46E+01 3.41E+01 4.20E+01
Std. Dev. 2.05E+00 3.01E+00 2.81E+00 2.52E+00 2.99E+00

ZDT3 Best 2.81E+01 2.91E+01 3.30E+01 2.48E+01 3.26E+01
Average 3.37E+01 3.28E+01 39.8E+01 2.97E+01 38.5E+01
Worst 3.63E+01 3.64E+01 4.26E+01 3.36E+01 4.17E+01
Std. Dev. 2.02E+00 2.99E+00 2.41E+00 2.18E+00 2.76E+00

DT LZ1 Best 1.62E+01 1.74E+01 2.13E+01 1.31E+01 2.03E+01
Average 2.17E+01 2.07E+01 27.6E+01 1.79E+01 26.6E+01
Worst 2.41E+01 2.54E+01 3.06E+01 2.13E+01 3.27E+01
Std. Dev. 2.35E+00 2.61E+00 1.91E+00 1.98E+00 3.01E+00

DT LZ2 Best 1.53E+01 1.59E+01 2.01E+01 1.23E+01 1.94E+01
Average 1.98E+01 1.95E+01 2.62E+01 1.59E+01 2.58E+01
Worst 2.29E+01 2.42E+01 2.84E+01 2.00E+01 2.97E+01
Std. Dev. 1.75E+00 1.83E+00 1.51E+00 1.83E+00 1.94E+00

DT LZ4 Best 1.93E+01 2.02E+01 2.54E+01 1.73E+01 2.53E+01
Average 2.35E+01 2.23E+01 2.92E+01 1.92E+01 2.86E+01
Worst 2.69E+01 3.22E+01 3.44E+01 2.60E+01 3.77E+01
Std. Dev. 1.93E+00 2.03E+00 1.99E+00 2.07E+00 2.14E+00

DT LZ5 Best 1.64E+01 1.70E+01 2.16E+01 1.43E+01 2.04E+01
Average 2.05E+01 1.92E+01 2.72E+01 1.61E+01 2.65E+01
Worst 2.31E+01 2.62E+01 2.94E+01 2.09E+01 3.17E+01
Std. Dev. 1.65E+00 1.53E+00 1.65E+00 1.78E+00 1.89E+00

4.2.3. Analysis
From the statistical results of NNS, ER, GD and SM reported in Tables 4-7, it can be observed that, our proposed

method generally outperforms the four MOO algorithms compared over the majority of the benchmarks (except
Function DT LT1). As shown in Tables 4-7, we can observe that all MOO methods cannot efficiently solve Function355

DT LZ1. This could be interpreted by the complexities of objectives and many local optimal solutions contained in the
Pareto front of Function DT LZ1 [35]. Nevertheless, MOEA/D and SAMOPSO outperforms the other three over this
test function in terms of the average values of the NNS, ER, GD and SM metrics.

From Table 8, it is evident that TV-MOPSO outperforms MOEA/D, SAMOPSO, NSGA-II and BMOPSO with
respect to the average computation time. Since TV-MOPSO has the simplest updating rules in adjusting the three360

control parameters of particles, its computation time is likely reduced. However, it is important to note that, despite
consuming slightly more computation time than MOEA/D and TV-MOPSO, the proposed method provides the best
performance in terms of the quality of Pareto front in most of the benchmark test functions as shown in Tables 4-7.
Also, the difference in the average computation time between SAMOPSO, MOEA/D and TV-MOPSO is very small
in all benchmark test functions. This implies that the computation time of SAMOPSO is comparable with those of365
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other MOO algorithms tested.

4.2.4. Statistical Comparison
This subsection performs a statistical comparison to detect whether the five tested methods are significantly dif-

ferent in solving the 12 benchmarks. In the statistical comparison, a rank-based analysis is first conducted to examine
the average rank of each method over the12 benchmark functions. Then, the non-parametric Friedman test [37] on370

the mean rank followed by the pairwise post hoc Bonferroni-Dunn test [37] is performed to investigate the overall
performances of different methods over the 12 test functions. Note that only the NNS metric is considered as an
example in the statistical comparison. Following the same statistical comparison for the remaining three evaluation
metrics, i.e. ER, GD and SM, we can readily analyse how much the five methods are significantly different from each
other.375

The ranks and average rank of each method for all benchmark functions are summarised in Table 9. From this
table, SAMOPSO outperforms MOEA/D, BMOPSO, TV-MOPSO and NSGA-II with respect to the average NNS
performance. Because this study compares 5 methods on 12 benchmark cases, the F-statistic value of the Friedman
test at the confidence level of 90% equals to 2.0772. Note that the F-statistic value of the Friedman test at the
confidence level of α% can be gained using the Matlab command: f inv(α,K − 1,(K − 1)(N − 1)), where K and380

N, respectively, denote the number of methods and test functions. From Table 9, the obtained Friedman statistic
value (Fscore) is equal to 31.6954. For more details about the calculation of Fscore, the reader is referred to [37].
Since the Fscore value is bigger than the F-statistic value, the null hypothesis, i.e. each method equally performs over
all considered benchmark problems, can be rejected [37]. This means that the five methods tested are significantly
different over the 12 test functions at the confidence level of 90%.385

Although the non-parametric Friedman test confirms that the five methods are significantly different over the 12
benchmark functions at the confidence level of 90%, it cannot be sufficiently concluded that SAMOPSO performs
significantly better than the other four methods in terms of the NNS metric. To highlight the mean performance of
SAMOPSO with respect to the other four methods, the pairwise post hoc Bonferroni-Dunn test is performed in this
paper. To examine whether or not a given method is significantly better than another method at the confidence level390

of α%, the Bonferroni-Dunn test checks whether the average rank difference between the two methods is greater than
the critical difference value (CD). If it is true, we can conclude that the given method is significantly better than the
other method at the confidence level of α% [37]. Note that the CD value can be calculated by qα

√
K(K +1)/(6N)

for K methods over N benchmark test functions [37]. Here, qα is a constant parameter and is equal to 2.241 in this
study according to [37].395

For the case where 5 methods are used to solve 12 test functions, we can readily obtain that, at the confidence level
of 90%, the critical difference value CD of the Bonferroni-Dunn test equals to 1.4466. From Table 9, it can be easily
evaluated that the average NNS value differences of SAMOPSO with respect to those of MOEA/D, BMOPSO, TV-
MOPSO and NSGA-II are 1.5, 1.67, 2.5 and 3.83, which are all larger than the critical difference value of 1.4466. This
implies that the proposed SAMOPSO provides significantly better average NNS performance than the four compared400

methods over the 12 chosen benchmark problems at the confidence level of 90%. Following the same analysis, we
can also conclude that SAMOPSO performs significantly better than its peers in terms of the mean ER, GD and SM
performance over the 12 benchmarks at the confidence level of 90%.
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Table 9. Rank values of average NNS results of different methods for 12 benchmarks (“AVR.” denotes the average rank value)

SAMOPSO MOEA/D BMOPSO TV-MOPSO NSGA-II
F1 1 2 3 4 5
F2 1 3 4 2 5
F3 1 3 2 4 5
UF1 1 3 4 2 5
UF2 1 3 2 4 5
UF3 1 2 4 3 5
ZDT1 1 3 2 4 5
ZDT3 1 3 2 4 5
DT LZ1 2 1 3 4 4
DT LZ2 1 2 3 4 5
DT LZ4 1 3 2 4 5
DT LZ5 1 3 2 4 5
AVR. 1.083 2.583 2.750 3.583 4.917

4.3. Application on the environmental/economic dispatch (EED) problem

4.3.1. Formulation of EED problem405

Aiming to determine the optimal combination of power outputs of all generators over the whole scheduling period,
the EED problem can be mathematically formulated as follows [17]:

minimise :

{
F = ∑

N
i=1(ai +biPi + ciP2

i )

E = ∑
N
i=1(αi +βiPi + γiP2

i +ξi exp(λiPi))
(47)

Subject to :



Pi,min ≤ Pi ≤ Pi,max (48)
N

∑
i=1

Pi = PL +PD (49)

PL =
N

∑
i=1

N

∑
j=1

PiBi jPj +
N

∑
i=1

PiBi0 +B00 (50)

where F denotes the total fuel cost in $/h. E represents the total emission rate in Kg/h. ai, bi and ci are fuel cost
coefficients of generator i. βi, γi, ξi and λi are emission coefficients of generator i. Pi is the power output of generator410

i in MW . N denotes the total number of generators. Pi,min and Pi,max denote the minimum and maximum output limits
of generator i, respectively. PL is the total power loss of the power system in MW . PD is the total power demand of
the system in MW . Bi j, Bi0 and B00 represent the transmission loss coefficients.

4.3.2. Numerical simulation for the EED problem
SAMOPSO, MOEA/D, BMOPSO, TV-MOPSO and NSGA-II are applied to solve the IEEE-30-bus system [38]415

with 6 generators. In the numerical simulation, a Monte-Carlo experiment with 30 runs is conducted. The size of the
repository of each method is bounded to be 50 in each run of the Monte-Carlo experiment. The total power demand
of the system is given as PD = 2.2. The minimum and maximum output boundaries for the 6 generators are set to be
Pmin = [0.05,0.05,0.05,0.05,0.05,0.05] and Pmax = [0.5,0.6,1.0,1.2,1.0,0.6], respectively. The other coefficients for
the IEEE-30-bus system are given as follows:420

B00 = 0.0014 (51)

Bi0 = (1e−03) · [0.010731 1.7704 −4.0645 3.8453 1.3832 5.5503] (52)
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Bi j =


0.0218 0.0107 −0.00036 −0.0011 0.00055 0.0033
0.0107 0.01704 −0.0001 −0.00179 0.00026 0.0028
−0.0004 −0.0002 0.02459 −0.01328 −0.0018 −0.0079
−0.0011 −0.00197 −0.01328 0.0265 0.0098 0.0045
0.00055 0.00026 −0.0118 0.0098 0.0216 −0.0001
0.0033 0.0028 −0.00792 0.0045 −0.00012 0.02978

 (53)

Table 10. The fuel cost and emission coefficients of each generator of the IEEE-30-bus system (Gi denotes the ith generator)

G1 G2 G3 G4 G5 G6

a 10 10 20 10 20 10
b 200 150 180 100 180 150
c 100 120 40 60 40 100
α 4.091 2.543 4.258 5.526 4.258 6.131
β -5.554 -6.047 -5.094 -3.55 -5.094 -5.555
γ 6.490 5.638 4.586 3.380 4.586 5.151
ξ 2e-04 5e-04 1e-06 2e-03 1e-06 1e-05
λ 2.857 3.333 8.000 2.000 8.000 6.667

The statistical results of the tested MOO algorithms, with respect to the five performance metrics, are summarised
in Table 11. The non-dominated solutions produced by different methods are visualised in Fig. 5. From Table
11, it is clear that SAMOPSO outperforms other four algorithms in terms of the average NNS, ER, GD and SM425

performance in the EED problem. Comparing with MOEA/D, BMOPSO, TV-MOPSO and NSGA-II, SAMOPSO
averagely improves the NNS performance by 97.87%, 153.64%, 298.57% and 654.05%; the ER performance by
38.44%, 43.33%, 48.60% and 52.27%; the GD performance by 50.71%, 53.99%, 55.41% and 55.57% and the SM
performance by 49.76%, 54.22%, 57.26% and 57.96%, respectively. This confirms that that SAMOPSO provides
better quality of the Pareto front for the EED problem, compared with its competitors.430

As shown in Table 11, TV-MOPSO, MOEA/D and SAMOPSO are ranked the first, second and third in terms
of the computation time, but the difference is small. Here, it is important to note that, despite taking slightly more
computation time than MOEA/D and TV-MOPSO, SAMOPSO significantly outperforms these two methods with
respect to the mean NNS, ER, GD and SM performance.

Table 11. Statistical results of different evaluation metrics obtained by different methods for the EED problem

Metrics Methods

SAMOPSO MOEA/D BMOPSO TV-MOPSO NSGA-II

NNS Best 4.90e+01 2.90E+01 2.70E+01 1.70E+01 8.00E+00
Average 2.79E+01 1.41E+01 1.10E+01 7.00E+00 3.70E+00
Worst 6.00E+00 4.00E+00 4.00E+00 2.00E+00 1.00E+00
Std. Dev. 1.83E+01 1.16E+01 8.69E+00 4.50E+00 2.00E+00

ER Best 2.00E-02 4.20E-01 4.60E-01 6.60E-01 8.40E-01
Average 4.42E-01 7.18E-01 7.80E-01 8.60E-01 9.26E-01
Worst 8.80E-01 9.20E-01 9.20E-01 9.60E-01 9.80E-01
Std. Dev. 3.66E-01 2.31E-01 1.74E-01 8.99E-02 4.01E-02

GD Best 7.40E-04 1.44E-02 1.88E-02 1.21E-02 1.45E-02
Average 1.73E-02 3.51E-02 3.76E-02 3.88E-02 3.91E-02
Worst 3.59E-02 7.53E-02 7.96E-02 1.44E-01 1.21E-01
Std. Dev. 1.31E-02 1.94E-02 2.16E-02 3.89E-02 3.33E-02

SM Best 5.24E-03 7.54E-02 9.69E-02 7.97E-02 7.37E-02
Average 1.03E-01 2.05E-01 2.24E-01 2.41E-01 2.45E-01
Worst 2.47E-01 4.99E-01 5.42E-01 8.15E-01 9.94E-01
Std. Dev. 8.05E-02 1.41E-01 1.61E-01 2.33E-01 2.76E-01

CT Best 3.33E+01 3.20E+01 3.76E+01 3.03E+01 3.87E+01
Average 3.72E+01 3.61E+01 3.82E+01 3.41E+01 4.15E+01
Worst 4.01E+01 3.92E+01 4.44E+01 3.69E+01 4.52E+01
Std. Dev. 1.15E+00 1.12E+00 1.35E+00 1.01E+00 1.59E+00
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Fig. 5. Pareto fronts obtained by different methods for the EED problem

5. Conclusions435

In this study, a PSO-based MOO framework is developed to obtain a high-quality Pareto front. For this pur-
pose, a novel PSO method, named self-adaptive PSO (SAPSO), is first proposed and implemented to search the
non-dominated solutions in the developed MOO framework. In order to well balance the trade-offs between the
exploration and exploitation capabilities of SAPSO, we propose a self-adaptive strategy that tunes the three control
parameters of particles. Since the convergence property of PSO plays a crucial role in the field of PSO development,440

this paper also investigates the convergence of the proposed SAPSO method with respect to different values of the
three control parameters. Then, a convergence-guaranteed parameter selection principle is proposed for the developed
SAPSO.

Leveraging the proposed SAPSO, this paper completes the design of a MOO framework, called SAMOPSO. In
the proposed framework, a fixed-size external repository is designed to save non-dominated best solutions of particles.445

To obtain a well-distributed Pareto front, this paper develops the circular sorting method, which is integrated with the
elitist-preserving approach [4] and updates the external repository.

The proposed approach is validated via 12 benchmark test functions and a real-world MOO problem against four
well-established MOO algorithms: MOEA/D, BMOPSO, NSGA-II and TV-MOPSO. The comparison is conducted
based on five widely-adopted MOO performance metrics. The simulation results reveal that the proposed method is450

highly competitive in most of benchmark test functions with respect to the quality of the Pareto front. Moreover, the
statistical analysis on the simulation results verifies that the proposed method significantly outperforms the other four
compared algorithms in the selected benchmark problems at the confidence level of 90%. Also, the computation time
of the proposed method is comparable with those of the other methods. This implies that the proposed framework is
a very effective MOO algorithm.455

Appendix

The obtained Pareto fronts of different methods for each benchmark test function are depicted in this Appendix.
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Fig. 6. Pareto fronts obtained by different methods for different Functions
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Fig. 7. Pareto fronts obtained by different methods for different Functions
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