53 research outputs found

    The roles of aromatic residues in the glycine receptor transmembrane domain.

    Get PDF
    BACKGROUND: Cys-loop receptors play important roles in fast neuronal signal transmission. Functional receptors are pentamers, with each subunit having an extracellular, transmembrane (TM) and intracellular domain. Each TM domain contains 4 α-helices (M1-M4) joined by loops of varying lengths. Many of the amino acid residues that constitute these α-helices are hydrophobic, and there has been particular interest in aromatic residues, especially those in M4, which have the potential to contribute to the assembly and function of the receptor via a range of interactions with nearby residues. RESULTS: Here we show that many aromatic residues in the M1, M3 and M4 α-helices of the glycine receptor are involved in the function of the receptor. The residues were explored by creating a range of mutant receptors, characterising them using two electrode voltage clamp in Xenopus oocytes, and interpreting changes in receptor parameters using currently available structural information on the open and closed states of the receptor. For 7 residues function was ablated with an Ala substitution: 3 Tyr residues at the extracellular end of M1, 2 Trp residues located towards the centers of M1 and M3, and a Phe and a Tyr residue in M4. For many of these an alternative aromatic residue restored wild-type-like function indicating the importance of the π ring. EC50s were increased with Ala substitution of 8 other aromatic residues, with those in M1 and M4 also having reduced currents, indicating a role in receptor assembly. The structure shows many potential interactions with nearby residues, especially between those that form the M1/M3/M4 interface, and we identify those that are supported by the functional data. CONCLUSION: The data reveal the importance and interactions of aromatic residues in the GlyR M1, M3 and M4 α-helices, many of which are essential for receptor function

    Machine learning-guided synthesis of advanced inorganic materials

    Full text link
    Synthesis of advanced inorganic materials with minimum number of trials is of paramount importance towards the acceleration of inorganic materials development. The enormous complexity involved in existing multi-variable synthesis methods leads to high uncertainty, numerous trials and exorbitant cost. Recently, machine learning (ML) has demonstrated tremendous potential for material research. Here, we report the application of ML to optimize and accelerate material synthesis process in two representative multi-variable systems. A classification ML model on chemical vapor deposition-grown MoS2 is established, capable of optimizing the synthesis conditions to achieve higher success rate. While a regression model is constructed on the hydrothermal-synthesized carbon quantum dots, to enhance the process-related properties such as the photoluminescence quantum yield. Progressive adaptive model is further developed, aiming to involve ML at the beginning stage of new material synthesis. Optimization of the experimental outcome with minimized number of trials can be achieved with the effective feedback loops. This work serves as proof of concept revealing the feasibility and remarkable capability of ML to facilitate the synthesis of inorganic materials, and opens up a new window for accelerating material development

    Differential biosynthesis and cellular permeability explain longitudinal gibberellin gradients in growing roots.

    Get PDF
    Control over cell growth by mobile regulators underlies much of eukaryotic morphogenesis. In plant roots, cell division and elongation are separated into distinct longitudinal zones and both division and elongation are influenced by the growth regulatory hormone gibberellin (GA). Previously, a multicellular mathematical model predicted a GA maximum at the border of the meristematic and elongation zones. However, GA in roots was recently measured using a genetically encoded fluorescent biosensor, nlsGPS1, and found to be low in the meristematic zone grading to a maximum at the end of the elongation zone. Furthermore, the accumulation rate of exogenous GA was also found to be higher in the elongation zone. It was still unknown which biochemical activities were responsible for these mobile small molecule gradients and whether the spatiotemporal correlation between GA levels and cell length is important for root cell division and elongation patterns. Using a mathematical modeling approach in combination with high-resolution GA measurements in vivo, we now show how differentials in several biosynthetic enzyme steps contribute to the endogenous GA gradient and how differential cellular permeability contributes to an accumulation gradient of exogenous GA. We also analyzed the effects of altered GA distribution in roots and did not find significant phenotypes resulting from increased GA levels or signaling. We did find a substantial temporal delay between complementation of GA distribution and cell division and elongation phenotypes in a GA deficient mutant. Together, our results provide models of how GA gradients are directed and in turn direct root growth

    Structure and phase engineering of 2D transition metal chalcogenides

    No full text
    As an indispensable member of the two-dimensional (2D) family as well as a perfect complement to graphene, 2D transition metal chalcogenides (TMCs) have long been the center of research attention, attributed to their large spectrum of fascinating properties along with the various crystal structures. In parallel with the discovery of new candidate materials and exploration of their unique characteristics, engineering the 2D TMCs into designated structures and phases are also of great importance for meeting the requirement for different applications. This thesis focuses on the structure and phase engineering of 2D TMCs to tune their physicochemical properties. Four strategies are adopted to tune the properties of 2D TMCs by fabricating them into desired structures, architectures, or defined phases: construction of heterostructure, alloying, phase-selective growth, and dimension tuning. Moreover, this thesis also describes and validates the feasibility and potential of introducing ML to guide the synthesis and engineering of 2D TMCs. In the first project, through the construction of MoS2-WS2 lateral heterostructures, semiconductor p-n junctions are successfully obtained, which are essential building blocks for modern electronic and optoelectronic devices. Moreover, the morphology of heterostructures can be engineered by fine-tuning the synthesis conditions. WS2 quantum well is also identified in the synthesized heterostructures, providing opportunities for studying novel optical properties and quantum confinement effects. In the second project, monolayer WTe2xS2(1-x) alloys with tunable chemical compositions and phases are fabricated using a carefully designed one-step CVD method. By controlling the synthesis condition, both semiconducting 1H and metallic 1T´ phase 2D WTe2xS2(1-x) alloys are obtained. Bandgap engineering of WTe2xS2(1-x) alloys in the 1H phase is achieved as well. Moreover, the generalizability of the proposed approach in preparing phase tunable TMCs alloys, is demonstrated for the growth of 2D WTe2xSe2(1-x) alloys. In the third project, the strategy of phase-selective growth is applied to the study of 2D Cr5Te8. Phase-tunable growth of 2D ferromagnetic Cr5Te8 is achieved via a facile CVD route. By fine-tuning the synthesis condition, both trigonal and monoclinic phase Cr5Te8 down to a few nanometers are synthesized for the first time and their ferromagnetic properties are respectively examined. Compared with the trigonal phase, monoclinic Cr5Te8 possesses a higher Curie temperature and coercivity field. Phase-dependent characteristics that existed in many 2D TMCs make phase-selective growth more useful. In the last project, the feasibility and capability of ML techniques to guide the synthesis and engineering of 2D TMCs are demonstrated. ML-guided synthesis and dimension tuning of few-layer 1T´ WTe2 are realized. An ML model with a high AUROC of 0.93 is established, to optimize the CVD synthesis conditions of few-layer 1T´ WTe2. Feature importance extracted from the model further reveals that source ratio plays a dominating role in governing the morphology of the synthesized WTe2 flakes. WTe2 nanoribbons are eventually obtained. This work suggests that ML is a powerful and efficient approach to guide the synthesis and dimension tuning of 2D materials, opening up new opportunities for boosting the diversified nanostructures derived from the 2D TMCs family.Doctor of Philosoph

    Recent developments in chemical vapor deposition of 2D magnetic transition metal chalcogenides

    No full text
    In recent years, two-dimensional (2D) magnetic transition metal chalcogenides (TMCs) have attracted tremendous research interests thanks to their intriguing properties that are essential in developing future electronic and spintronic devices in this modernizing era. This review aims to introduce recent developments in the preparation of 2D magnetic TMCs, especially chromium and iron-based chalcogenides, their structures, as well as the related intriguing magnetic phenomena. First, the common crystal structures of magnetic TMCs including both layered and nonlayered structures are introduced. Various chemical vapor deposition strategies for synthesizing 2D magnetic TMCs are then introduced with emphasis on the key synthesis parameters. Moreover, the intriguing physical properties associated with 2D TMCs such as magnetic anisotropy, thickness, and phase-dependent magnetic response as well as stability are summarized. Last but not least, challenges and future research directions are briefly discussed in light of recent advances in the field.Ministry of Education (MOE)National Research Foundation (NRF)Submitted/Accepted versionZ.L. acknowledges support from National Research Foundation Singapore Programme Grants NRF-CRP22-2019-0007, NRF-CRP21-2018-0007, and NRF-CRP22-2019-0004. This research is also supported by the Ministry of Education, Singapore, under its AcRF Tier 3 Programme “Geometrical Quantum Materials” (Grant MOE2018-T3-1-002), and AcRF Tier 1 Grant RG161/19
    • …
    corecore