35 research outputs found

    Abundance of ACVR1B transcript is elevated during septic conditions: perspectives obtained from a hands-on reductionist investigation

    Get PDF
    Sepsis is a complex heterogeneous condition, and the current lack of effective risk and outcome predictors hinders the improvement of its management. Using a reductionist approach leveraging publicly available transcriptomic data, we describe a knowledge gap for the role of ACVR1B (activin A receptor type 1B) in sepsis. ACVR1B, a member of the transforming growth factor-beta (TGF-beta) superfamily, was selected based on the following: 1) induction upon in vitro exposure of neutrophils from healthy subjects with the serum of septic patients (GSE49755), and 2) absence or minimal overlap between ACVR1B, sepsis, inflammation, or neutrophil in published literature. Moreover, ACVR1B expression is upregulated in septic melioidosis, a widespread cause of fatal sepsis in the tropics. Key biological concepts extracted from a series of PubMed queries established indirect links between ACVR1B and "cancer", "TGF-beta superfamily", "cell proliferation", "inhibitors of activin", and "apoptosis". We confirmed our observations by measuring ACVR1B transcript abundance in buffy coat samples obtained from healthy individuals (n=3) exposed to septic plasma (n = 26 melioidosis sepsis cases)ex vivo. Based on our re-investigation of publicly available transcriptomic data and newly generated ex vivo data, we provide perspective on the role of ACVR1B during sepsis. Additional experiments for addressing this knowledge gap are discussed

    Comparison of community-onset Staphylococcus argenteus and Staphylococcus aureus sepsis in Thailand: a prospective multicentre observational study.

    Get PDF
    Staphylococcus argenteus is a globally distributed cause of human infection, but diagnostic laboratories misidentify this as Staphylococcus aureus. We determined whether there is clinical utility in distinguishing between the two. A prospective cohort study of community-onset invasive staphylococcal sepsis was conducted in adults at four hospitals in northeast Thailand between 2010 and 2013. Of 311 patients analysed, 58 (19%) were infected with S. argenteus and 253 (81%) with S. aureus. Most S. argenteus (54/58) were multilocus sequence type 2250. Infection with S. argenteus was more common in males, but rates of bacteraemia and drainage procedures were similar in the two groups. S. argenteus precipitated significantly less respiratory failure than S. aureus (5.2% versus 20.2%, adjusted OR 0.21, 95% CI 0.06-0.74, p 0.015), with a similar but non-significant trend for shock (6.9% versus 12.3%, adjusted OR 0.46, 95% CI 0.15-1.44, p 0.18). This did not translate into a difference in death at 28 days (6.9% versus 8.7%, adjusted OR 0.80, 95% CI 0.24-2.65, p 0.72). S. argenteus was more susceptible to antimicrobial drugs compared with S. aureus, and contained fewer toxin genes although pvl was detected in 16% (9/58). We conclude that clinical differences exist in association with sepsis due to S. argenteus versus S. aureus

    TLR4 genetic variation is associated with inflammatory responses in Gram-positive sepsis.

    Get PDF
    OBJECTIVES: To identify important pathogen recognition receptor (PRR) pathways regulating innate immune responses and outcome in Staphylococcus aureus sepsis. METHODS: We analysed whether candidate PRR pathway genetic variants were associated with killed S. aureus-induced cytokine responses ex vivo and performed follow-up in vitro studies. We tested the association of our top-ranked variant with cytokine responses and clinical outcomes in a prospective multicentre cohort of patients with staphylococcal sepsis. RESULTS: An intronic TLR4 polymorphism and expression quantitative trait locus, rs1927907, was highly associated with cytokine release induced by stimulation of blood from healthy Thai subjects with S. aureus ex vivo. S. aureus did not induce TLR4-dependent NF-κB activation in transfected HEK293 cells. In monocytes, tumor necrosis factor (TNF)-α release induced by S. aureus was not blunted by a TLR4/MD-2 neutralizing antibody, but in a monocyte cell line, TNF-α was reduced by knockdown of TLR4. In Thai patients with staphylococcal sepsis, rs1927907 was associated with higher interleukin (IL)-6 and IL-8 levels as well as with respiratory failure. S. aureus-induced responses in blood were most highly correlated with responses to Gram-negative stimulants whole blood. CONCLUSIONS: A genetic variant in TLR4 is associated with cytokine responses to S. aureus ex vivo and plasma cytokine levels and respiratory failure in staphylococcal sepsis. While S. aureus does not express lipopolysaccharide or activate TLR4 directly, the innate immune response to S. aureus does appear to be modulated by TLR4 and shares significant commonality with that induced by Gram-negative pathogens and lipopolysaccharide

    The role of short-chain dehydrogenase/oxidoreductase, induced by salt stress, on host interaction of B. pseudomallei.

    Get PDF
    BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a frequently occurring disease in northeastern Thailand, where soil and water high in salt content are common. Using microarray analysis, we previously showed that B. pseudomallei up-regulated a short-chain dehydrogenase/oxidoreductase (SDO) under salt stress. However, the importance of SDO in B. pseudomallei infection is unknown. This study aimed to explore the function of B. pseudomallei SDO, and to investigate its role in interactions between B. pseudomallei and host cells. RESULTS: Bioinformatics analysis of B. pseudomallei SDO structure, based on homology modeling, revealed a NAD+ cofactor domain and a catalytic triad containing Ser149, Tyr162, and Lys166. This is similar to Bacillus megaterium glucose 1-dehydrogenase. To investigate the role of this protein, we constructed a B. pseudomallei SDO defective mutant, measured glucose dehydrogenase (GDH) activity, and tested the interactions with host cells. The B. pseudomallei K96243 wild type exhibited potent GDH activity under condition containing 300 mM NaCl, while the mutant showed activity levels 15 times lower. Both invasion into the A549 cell line and early intracellular survival within the J774A.1 macrophage cell were impaired in the mutant. Complementation of SDO was able to restore the mutant ability to produce GDH activity, invade epithelial cells, and survive in macrophages. CONCLUSIONS: Our data suggest that induced SDO activity during salt stress may facilitate B. pseudomallei invasion and affect initiation of successful intracellular infection. Identifying the role of B. pseudomallei SDO provides a better understanding of the association between bacterial adaptation and pathogenesis in melioidosis

    Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei.

    No full text
    Cases of melioidosis and glanders are rare in the United States, but the etiologic agents of each disease (Burkholderia pseudomallei and Burkholderia mallei, respectively) are classified as Tier 1 select agents because of concerns about their potential use as bioterrorism agents. A rapid, highly sensitive, and portable assay for clinical laboratories and field use is required. Our laboratory has further evaluated a latex agglutination assay for its ability to identify B. pseudomallei and B. mallei isolates. This assay uses a monoclonal antibody that specifically recognizes the capsular polysaccharide produced by B. pseudomallei and B. mallei, but is absent in closely related Burkholderia species. A total of 110 B. pseudomallei and B. mallei were tested, and 36 closely related Burkholderia species. The latex agglutination assay was positive for 109 of 110 (99.1% sensitivity) B. pseudomallei and B. mallei isolates tested

    Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei.

    No full text
    Cases of melioidosis and glanders are rare in the United States, but the etiologic agents of each disease (Burkholderia pseudomallei and Burkholderia mallei, respectively) are classified as Tier 1 select agents because of concerns about their potential use as bioterrorism agents. A rapid, highly sensitive, and portable assay for clinical laboratories and field use is required. Our laboratory has further evaluated a latex agglutination assay for its ability to identify B. pseudomallei and B. mallei isolates. This assay uses a monoclonal antibody that specifically recognizes the capsular polysaccharide produced by B. pseudomallei and B. mallei, but is absent in closely related Burkholderia species. A total of 110 B. pseudomallei and B. mallei were tested, and 36 closely related Burkholderia species. The latex agglutination assay was positive for 109 of 110 (99.1% sensitivity) B. pseudomallei and B. mallei isolates tested

    Monoclonal antibody-based immunofluorescence microscopy for the rapid identification of Burkholderia pseudomallei in clinical specimens.

    Get PDF
    The diagnosis of melioidosis depends on the culture of Burkholderia pseudomallei, which takes at least 48 hours. We used a polyclonal-FITC-based immunofluorescence microscopic assay (Pab-IFA) on clinical samples to provide a rapid presumptive diagnosis. This has limitations including photobleaching and batch-to-batch variability. This study evaluated an IFA based on a monoclonal antibody specific to B. pseudomallei (Mab-IFA) and Alexa Fluor 488. A diagnostic evaluation was performed on a prospective cohort of 951 consecutive patients with suspected melioidosis. A total of 1,407 samples were tested. Test accuracy was defined against culture as the gold standard, and was also compared against Pab-IFA. A total of 88 samples from 64 patients were culture positive for B. pseudomallei. The diagnostic sensitivity and specificity of the Mab-IFA was comparable to the Pab-IFA (48.4% versus 45.3% for sensitivity, and 99.8% versus 98.8% for specificity). We have incorporated the Mab-IFA into our routine practice

    Rapid detection of Burkholderia pseudomallei in blood cultures using a monoclonal antibody-based immunofluorescent assay.

    Get PDF
    Melioidosis is a severe bacterial infection caused by Burkholderia pseudomallei. Rapid antimicrobial therapy is necessary to improve patient outcome, which is aided by direct detection of B. pseudomallei in clinical samples. A drawback for all antigen assays is that the number of B. pseudomallei in blood usually falls below the achievable level of detection. We performed a prospective cohort study of 461 patients with 541 blood cultures to evaluate the utility of a pre-incubation step prior to detection of B. pseudomallei using a monoclonal antibody-based immunofluorescent assay (Mab-IFA). The Mab-IFA was positive in 74 of 76 patients with melioidosis (sensitivity = 97.4%), and negative in 385 patients who did not have blood cultures containing B. pseudomallei (specificity = 100%). The Mab-IFA could be a valuable supplementary tool for rapid detection. We recommend the use of the Mab-IFA to test blood cultures that flag positive in regions where melioidosis is endemic

    Genome analysis of secondary metabolitebiosynthetic gene clusters of Photorhabdus akhurstii subsp. akhurstii and its antibacterial activity against antibiotic-resistant bacteria

    No full text
    Xenorhabdus and Photorhabdus can produce a variety of secondary metabolites with broad spectrum bioactivity against microorganisms. We investigated the antibacterial activity of Xenorhabdus and Photorhabdus against 15 antibiotic-resistant bacteria strains. Photorhabdus extracts had strong inhibitory the growth of Methicillin-resistant Staphylococcus aureus (MRSA) by disk diffusion. The P. akhurstii s subsp. akhurstii (bNN168.5_TH) extract showed lower minimum inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC). The interaction between either P. akhurstii subsp. akhurstii (bNN141.3_TH) or P. akhurstii subsp. akhurstii (bNN168.5_TH) or P. hainanensis (bNN163.3_TH) extract in combination with oxacillin determined by checkerboard assay exhibited partially synergistic interaction with fractional inhibitory concentration index (FICI) of 0.53. Time-killing assay for P. akhurstii subsp. akhurstii (bNN168.5_TH) extract against S. aureus strain PB36 significantly decreased cell viability from 105 CFU/ml to 103 CFU/ml within 30 min (P < 0.001, t-test). Transmission electron microscopic investigation elucidated that the bNN168.5_TH extract caused treated S. aureus strain PB36 (MRSA) cell membrane damage. The biosynthetic gene clusters of the bNN168.5_TH contained non-ribosomal peptide synthetase cluster (NRPS), hybrid NRPS-type l polyketide synthase (PKS) and siderophore, which identified potentially interesting bioactive products: xenematide, luminmide, xenortide A-D, luminmycin A, putrebactin/avaroferrin and rhizomide A-C. This study demonstrates that bNN168.5_TH showed antibacterial activity by disrupting bacterial cytoplasmic membrane and the draft genome provided insights into the classes of bioactive products. This also provides a potential approach in developing a novel antibacterial agent

    Common TLR1 genetic variation is not associated with death from melioidosis, a common cause of sepsis in rural Thailand

    Get PDF
    Melioidosis, infection caused by the Gram-negative bacterium Burkholderia pseudomallei, is a common cause of sepsis in northeast Thailand. In white North Americans, common functional genetic variation in TLR1 is associated with organ failure and death from sepsis. We hypothesized that TLR1 variants would be associated with outcomes in Thais with melioidosis. We collated the global frequencies of three TLR1 variants that are common in white North American populations: rs5743551 (-7202A/G), rs4833095 (742A/G), and rs5743618 (1804G/T). We noted a reversal of the minor allele from white North American subjects to Asian populations that was particularly pronounced for rs5743618. In the Utah residents of European ancestry, the frequency of the rs5743618 T allele was 17% whereas in Vietnamese subjects the frequency was >99%. We conducted a genetic association study in 427 patients with melioidosis to determine the association of TLR1 variation with organ failure or death. We genotyped rs5743551 and rs4833095. The variants were in high linkage disequilibrium but neither variant was associated with organ failure or in-hospital death. In 300 healthy Thai individuals we further tested the association of TLR1 variation with ex vivo blood responses to Pam3CSK4, a TLR1 agonist. Neither variant was robustly associated with blood cytokine responses induced by Pam3CSK4. We identified additional common variation in TLR1 by searching public databases and the published literature and screened three additional TLR1 variants for associations with Pam3CSK4-induced responses but found none. We conclude that the genetic architecture of TLR1 variation differs substantially in southeast Asians compared to other populations and common variation in TLR1 in Thais is not associated with outcome from melioidosis or with altered blood responses to Pam3CSK4. Our findings highlight the need for additional studies of TLR1 and other innate immune genetic modulators of the inflammatory host response and determinants of sepsis in southeast Asian populations
    corecore