56 research outputs found

    Lock-in transition of charge density waves in quasi-one-dimensional conductors: reinterpretation of McMillan's theory

    Get PDF
    We investigated the lock-in transition of charge density waves (CDWs) in quasi-one-dimensional conductors, based on McMillan's free energy. The higher-order umklapp terms play an essential role in this study. McMillan's theory was extended by Nakanishi and Shiba in order to treat multiple CDW vectors. Although their theories were aimed at understanding CDWs in quasi-two-dimensional conductors, we applied them to the quasi-one-dimensional conductors, including K0.3_{0.3}MoO3_3, NbSe3_3, and mm-TaS3_3, and confirmed its validity for these cases. Then we discussed our previous experimental result of oo-TaS3_3, which revealed the coexistence of commensurate and incommensurate states. We found that the coexistence of multiple CDW vectors is essential for the lock-in transition to occur in oo-TaS3_3. The even- and odd-order terms in the free energy play roles for amplitude development and phase modulation, respectively. Moreover, consideration of the condition of being commensurate CDWs allowed us to relate it with that of the weak localization in random media.Comment: 12 pages, 3 figure

    Rotating black hole in extended Chern-Simons modified gravity

    Full text link
    We investigate a slowly rotating black hole in four-dimensional extended Chern-Simons modified gravity. We obtain an approximate solution that reduces to the Kerr solution when a coupling constant vanishes. The Chern-Simons correction effectively reduces the frame-dragging effect around a black hole in comparison with that of the Kerr solution.Comment: 9 pages, 1 figure, to appear in Progress of Theoretical Physics, typos correcte

    Direct Observation of Mono-, Bi-, and Tri-layer Charge Density Waves in 1T-TaS_2 by Transmission Electron Microscopy without a Substrate

    Get PDF
    Charge-density-waves (CDW) which occur mainly in low-dimensional systems have a macroscopic wave function similar to superfluids and superconductors. Kosterlitz-Thouless (KT) transition is observed in superfluids and superconductors, but the presence of KT transition in ultra-thin CDW systems has been an open problem. We report the direct real-space observation of CDWs with new order states in mono-, bi-, and tri-layer 1T-TaS_2 crystal by using a low voltage scanning-transmission-electron-microscope (STEM) without a substrate. This method is ideal to observe local atomic structures and possible defects. We clearly observed that the mono-layer crystal has a new triclinic stripe CDW order without the triple q condition q_1 + q_2 + q_3 = 0. A strong electron-phonon interaction gives rise to new crevasse (line) type defects instead of disclination (point) type defects due to the KT transition. These results reaffirm the importance of the electron-phonon interaction in mono-layer nanophysics.Comment: 5 figures, 1 tabl

    Does a black hole rotate in Chern-Simons modified gravity?

    Get PDF
    Rotating black hole solutions in the (3+1)-dimensional Chern-Simons modified gravity theory are discussed by taking account of perturbation around the Schwarzschild solution. The zenith-angle dependence of a metric function related to the frame-dragging effect is determined from a constraint equation independently of a choice of the embedding coordinate. We find that at least within the framework of the first-order perturbation method, the black hole cannot rotate for finite black hole mass if the embedding coordinate is taken to be a timelike vector. However, the rotation can be permitted in the limit of M/r0M/r \to 0 (where MM is the black hole mass and rr is the radius). For a spacelike vector, the rotation can also be permitted for any value of the black hole mass.Comment: 4 pages, Accepted for publication in Phys. Rev.

    Detect Kernel-Mode Rootkits via Real Time Logging & Controlling Memory Access

    Get PDF
    Modern malware and spyware platforms attack existing antivirus solutions and even Microsoft PatchGuard. To protect users and business systems new technologies developed by Intel and AMD CPUs may be applied. To deal with the new malware we propose monitoring and controlling access to the memory in real time using Intel VT-x with EPT. We have checked this concept by developing MemoryMonRWX, which is a bare-metal hypervisor. MemoryMonRWX is able to track and trap all types of memory access: read, write, and execute. MemoryMonRWX also has the following competitive advantages: fine-grained analysis, support of multi-core CPUs and 64-bit Windows 10. MemoryMonRWX is able to protect critical kernel memory areas even when PatchGuard has been disabled by malware. Its main innovative features are as follows: guaranteed interception of every memory access, resilience, and low performance degradation
    corecore