40,335 research outputs found
Martian sample sites: Examples based on a global geologic perspective
Ten areas were selected that each include several rock units of varying lithology and age. These areas were chosen to optimize the geologic and chronologic data return from Mars. Geologic mapping and stratigraphic studies identify stratigraphic ages, rock types, and information on Martian geologic history that samples of a given site may yield. Volcanic rocks occur over much of the planet and in virtually all stratigraphic positions, and they are amenable to radioisotopic dating. Therefore, a reasonable and essential goal for a sample return mission is to return datable rocks from widely varying strata. Generally, about three or four major geologic units can be sampled at any of the given sites, most of which can probably be dated. The Mars Observer mission will aid greatly in interpreting lithology and defining contacts at the high resolution required to actually pinpoint good sample acquisition sites within these areas
Eruptive history of the Elysium Volcanic Province of Mars
New geologic mapping of the Elysium volcanic province at 1:2,000,000 scale and crater counts provide a basis for describing its overall eruptive history. Four stages are listed and described in order of their relative age. They are also distinguished by eruption style and location. Stage 1: Central volcanism at Hecates and Albor Tholi. Stage 2: Shield and complex volcanism at Elysium Mons and Elysium Fossae. Stage 3: Rille volcanism at Elysium Fossae and Utopia Planitia. Stage 4: Flood lava and pyroclastic eruptions at Hecates Tholus and Elysium Mons. Tectonic and channeling activity in the Elysium region is intimately associated with volcanism. Recent work indicates that isostatic uplift of Tharsis, loading by Elysium Mons, and flexural uplift of the Elysium rise produced the stresses responsible for the fracturing and wrinkle-ridge formation in the region. Coeval faulting and channel formation almost certainly occurred in the pertinent areas in Stages 2 to 4. Older faults east of the lava flows and channels on Hecates Tholus may be coeval with Stage 1
Interference Effects on Kondo-Assisted Transport through Double Quantum Dots
We systematically investigate electron transport through double quantum dots
with particular emphasis on interference induced via multiple paths of electron
propagation. By means of the slave-boson mean-field approximation, we calculate
the conductance, the local density of states, the transmission probability in
the Kondo regime at zero temperature. It is clarified how the Kondo-assisted
transport changes its properties when the system is continuously changed among
the serial, parallel and T-shaped double dots. The obtained results for the
conductance are explained in terms of the Kondo resonances influenced by
interference effects. We also discuss the impacts due to the spin-polarization
of ferromagnetic leads.Comment: 9 pages, 11 figures ; minor corrections and references adde
Chapman-Enskog method and synchronization of globally coupled oscillators
The Chapman-Enskog method of kinetic theory is applied to two problems of
synchronization of globally coupled phase oscillators. First, a modified
Kuramoto model is obtained in the limit of small inertia from a more general
model which includes ``inertial'' effects. Second, a modified Chapman-Enskog
method is used to derive the amplitude equation for an O(2) Takens-Bogdanov
bifurcation corresponding to the tricritical point of the Kuramoto model with a
bimodal distribution of oscillator natural frequencies. This latter calculation
shows that the Chapman-Enskog method is a convenient alternative to normal form
calculations.Comment: 7 pages, 2-column Revtex, no figures, minor change
The effect of an imaginary part of the Schwinger-Dyson equation at finite temperature and density
We examined the effect of an imaginary part of the ladder approximation
Schwinger-Dyson equation. We show the imaginary part enhances the effect of the
first order transition, and affects a tricritical point. In particular, a
chemical potential at a tricritical point is moved about 200(MeV). Thus, one
should not ignore the imaginary part. On the other hand, since an imaginary
part is small away from a tricritical point, one should be able to ignore an
imaginary part. In addition, we also examined the contribution of the wave
function renormalization constant.Comment: 12 pages, 14 figure
A Viscoelastic model of phase separation
We show here a general model of phase separation in isotropic condensed
matter, namely, a viscoelastic model. We propose that the bulk mechanical
relaxation modulus that has so far been ignored in previous theories plays an
important role in viscoelastic phase separation in addition to the shear
relaxation modulus. In polymer solutions, for example, attractive interactions
between polymers under a poor-solvent condition likely cause the transient
gellike behavior, which makes both bulk and shear modes active. Although such
attractive interactions between molecules of the same component exist
universally in the two-phase region of a mixture, the stress arising from
attractive interactions is asymmetrically divided between the components only
in dynamically asymmetric mixtures such as polymer solutions and colloidal
suspensions. Thus, the interaction network between the slower components, which
can store the elastic energy against its deformation through bulk and shear
moduli, is formed. It is the bulk relaxation modulus associated with this
interaction network that is primarily responsible for the appearance of the
sponge structure peculiar to viscoelastic phase separation and the phase
inversion. We demonstrate that a viscoelastic model of phase separation
including this new effect is a general model that can describe all types of
isotropic phase separation including solid and fluid models as its special
cases without any exception, if there is no coupling with additional order
parameter. The physical origin of volume shrinking behavior during viscoelastic
phase separation and the universality of the resulting spongelike structure are
also discussed.Comment: 14 pages, RevTex, To appear in Phys. Rev
Local electronic structure and magnetic properties of LaMn0.5Co0.5O3 studied by x-ray absorption and magnetic circular dichroism spectroscopy
We have studied the local electronic structure of LaMn0.5Co0.5O3 using
soft-x-ray absorption spectroscopy at the Co-L_3,2 and Mn-L_3,2 edges. We found
a high-spin Co^{2+}--Mn^{4+} valence state for samples with the optimal Curie
temperature. We discovered that samples with lower Curie temperatures contain
low-spin nonmagnetic Co^{3+} ions. Using soft-x-ray magnetic circular dichroism
we established that the Co^{2+} and Mn^{4+} ions are ferromagnetically aligned.
We revealed also that the Co^{2+} ions have a large orbital moment:
m_orb/m_spin ~ 0.47. Together with model calculations, this suggests the
presence of a large magnetocrystalline anisotropy in the material and predicts
a non-trivial temperature dependence for the magnetic susceptibility.Comment: 8 pages, 7 figure
Space charge and charge trapping characteristics of cross-linked polyethylene subjected to ac electric stresses
This paper reports on the result of space charge evolution in cross-linked polyethylene (XLPE) planar samples of approximately 220 ?m thick. The space charge measurement technique used in this study is the PEA method. There are two phases to this experiment. In the first phase, the samples were subjected to dc 30 kVdc/mm and ac (sinusoidal) electric stress level of 30 kVpk/mm at frequencies of 1 Hz, 10 Hz and 50 Hz ac. In addition, ac space charge under 30 kVrms/mm and 60 kVpk/mm electric stress at 50 Hz was also investigated. The volts off results showed that the amount of charge trapped in XLPE sample under dc electric stress is significantly bigger than samples under ac stress even when the applied ac stresses are substantially higher. The second phase of the experiment involves studying the dc space charge evolution in samples that were tested under ac stress during the first phase of the experiment. Ac ageing causes positive charge to become more dominant over negative charge. It was also discovered that ac ageing creates deeper traps, particularly for negative charge. This paper also gave a brief overview of the data processing methods used to analyse space charge under ac electric stress
Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid
We propose that the boson peak originates from the (quasi-) localized
vibrational modes associated with long-lived locally favored structures, which
are intrinsic to a liquid state and are randomly distributed in a sea of
normal-liquid structures. This tells us that the number density of locally
favored structures is an important physical factor determining the intensity of
the boson peak. In our two-order-parameter model of the liquid-glass
transition, the locally favored structures act as impurities disturbing
crystallization and thus lead to vitrification. This naturally explains the
dependence of the intensity of the boson peak on temperature, pressure, and
fragility, and also the close correlation between the boson peak and the first
sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte
- …