371 research outputs found
Magnetic Phase Diagrams with Possible Field-induced Antiferroquadrupolar Order in TbBC
Magnetic phase diagrams of a tetragonal antiferromagnet TbBC were
clarified by temperature and field dependence of magnetization. It is
noticeable that the N{\'e}el temperature in TbBC is anomalously
enhanced with magnetic fields, in particular the enhancement reaches 13.5 K for
the direction at 10 T. The magnetization processes as well as the
phase diagrams are well interpreted assuming that there appear field-induced
antiferroquadrupolar ordered phases in TbBC. The phase diagrams of the
AFQ compounds in RBC are systematically understood in terms of the
competition with AFQ and AFM interactions.Comment: 4 pages, 4 figures, RevTeX
歯髄幹細胞からの分泌因子は、顎関節変形性関節症の治療に多面的な効果を示す
Objective: Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease characterized by progressive cartilage degeneration, abnormal bone remodeling, and chronic pain. In this study, we aimed to investigate effective therapies to reverse or suppress TMJOA progression.
Design: To this end, we performed intravenous administration of serum free conditioned media from human exfoliated deciduous teeth stem cells (SHED-CM) into a mechanical-stress induced murine TMJOA model.
Results: SHED-CM administration markedly suppressed temporal muscle inflammation, and improved bone integrity and surface smoothness of the destroyed condylar cartilage. Moreover, SHED-CM treatment decreased the number of IL-1β, iNOS, and MMP-13 expressing chondrocytes, whereas it specifically increased PCNA-positive cells in the multipotent polymorphic cell layer. Notably, the numbers of TdT-mediated dUTP nick end labeling (TUNEL)-positive apoptotic chondrocytes in the SHED-CM treated condyles were significantly lower than in those treated with DMEM, whereas the proteoglycan positive area was restored to a level similar to that of the sham treated group, demonstrating that SHED-CM treatment regenerated the mechanical-stress injured condylar cartilage and subchondral bone. Secretome analysis revealed that SHED-CM contained multiple therapeutic factors that act in osteochondral regeneration.
Conclusions: Our data demonstrated that SHED-CM treatment promoted the regeneration and repair of mechanical-stress induced mouse TMJOA. Our observations suggest that SHED-CM has potential to be a potent tissue-regenerating therapeutic agent for patients with severe TMJOA
Local density of states around a magnetic impurity in high-Tc superconductors based on the t-J model
The local density of states (LDOS) around a magnetic impurity in high-Tc
superconductors is studied using the two-dimensional t-J model with a realistic
band structure. The order parameters are determined in a self-consistent way
within the Gutzwiller approximation and the Bogoliubov-de Gennes theory. In
sharp contrast with the nonmagnetic impurity case, the LDOS near the magnetic
impurity shows two resonance peaks reflecting the presence of spin-dependent
resonance states. It is also shown that these resonance states are
approximately localized around the impurity. The present results have an large
implication on the scanning tunneling spectroscopy observation of
Bi_{2}Sr_{2}Ca(Cu_{1-x}Ni[Zn]_{x})_{2}O_{8+delta}.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Electronic states around a vortex core in high-Tc superconductors based on the t-J model
Electronic states around vortex cores in high-Tc superconductors are studied
using the two-dimensional t-J model in order to treat the d-wave
superconductivity with short coherence length and the antiferromagnetic (AF)
instability within the same framework. We focus on the disappearance of the
large zero-energy peak in the local density of states observed in high-Tc
superconductors. When the system is near the optimum doping, we find that the
local AF correlation develops inside the vortex cores. However, the detailed
doping dependence calculations confirm that the experimentally observed
reduction of the zero-energy peak is more reasonably attributed to the
smallness of the core size rather than to the AF correlation developed inside
the core. The correlation between the spatial dependence of the core states and
the core radius is discussed.Comment: 4 pages, 4 figure
LIPUS effect on osteoarthritic TMJs
The aim of this study was to assess the effect of low-intensity pulsed ultrasound (LIPUS) application on rat temporomandibular joints (TMJs) with early-stage of osteoarthritis-like conditions induced by mechanical overloading. Fifteen-week-old male Wistar rats were divided into two experimental groups and a control group (n = 10 each). Both TMJs of all rats in one experimental group were subjected to mechanical overloading for 5 d, and those in the other experimental group were exposed to LIPUS for 20 min/d after overloading. Condyles were assessed using micro-computed tomography, histology and histomorphometry. LIPUS treatment attenuated cartilage degeneration, decreased the number of osteoclastic cells and restored the expression of aggrecan after an initial decrease induced by mechanical overloading. These results indicate that LIPUS may have a protective effect on the early progression of TMJ osteoarthritis
TRITIUM, HYDROGEN AND OXYGEN ISOTOPE COMPOSITIONS IN MONTHLY PRECIPITATION SAMPLES COLLECTED AT TOKI, JAPAN
Monthly precipitation samples have been collected at Toki, Japan, from November 2013 to March 2017. In this report, selected data were analysed to identify the regional hydrogen and oxygen isotope compositions. Tritium (3H) concentration in the precipitation ranged from 0.10 to 0.61 Bq L−1 and higher 3H concentrations were observed in spring rather than in other seasons. This range was similar to values reported in Chiba City, Japan. 3H concentration and the ratio d-excess, and δD values were roughly clustered according to each separate season. These regional hydrogen and oxygen isotope compositions will be used for environmental assessments of effects of the deuterium plasma experiments of the large fusion test device
Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2
The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission
Nuclear magnetic relaxation and superfluid density in Fe-pnictide superconductors: An anisotropic \pm s-wave scenario
We discuss the nuclear magnetic relaxation rate and the superfluid density
with the use of the effective five-band model by Kuroki et al. [Phys. Rev.
Lett. 101, 087004 (2008)] in Fe-based superconductors. We show that a
fully-gapped anisotropic \pm s-wave superconductivity consistently explains
experimental observations. In our phenomenological model, the gaps are assumed
to be anisotropic on the electron-like \beta Fermi surfaces around the M point,
where the maximum of the anisotropic gap is about four times larger than the
minimum.Comment: 10 pages, 8 figures; Submitted versio
First Data Release of the Hyper Suprime-Cam Subaru Strategic Program
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered
imaging survey aimed at addressing some of the most outstanding questions in
astronomy today, including the nature of dark matter and dark energy. The
survey has been awarded 300 nights of observing time at the Subaru Telescope
and it started in March 2014. This paper presents the first public data release
of HSC-SSP. This release includes data taken in the first 1.7 years of
observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers
covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and
~27.0 mag, respectively (5sigma for point sources). All the layers are observed
in five broad bands (grizy), and the Deep and UltraDeep layers are observed in
narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in
the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF
photometry (rms) both internally and externally (against Pan-STARRS1), and ~10
mas and 40 mas internal and external astrometric accuracy, respectively. Both
the calibrated images and catalogs are made available to the community through
dedicated user interfaces and database servers. In addition to the pipeline
products, we also provide value-added products such as photometric redshifts
and a collection of public spectroscopic redshifts. Detailed descriptions of
all the data can be found online. The data release website is
https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for
publication in PAS
Improved detectability of small-bowel lesions via capsule endoscopy with computed virtual chromoendoscopy: A pilot study
Objective. Real-time video capsule endoscopy (CE) with flexible spectral imaging color enhancement (FICE) improves visibility of small-bowel lesions. This article aims to clarify whether CE-FICE also improves detectability of small-bowel lesions. Patients and methods. A total of 55 patients who underwent CE at Hiroshima University Hospital during the period November 2009 through March 2010 were enrolled in the study. Five patients were excluded from the study because residues and transit delays prevented sufficient evaluation. Thus, 50 patients participated. Two experienced endoscopists (each having interpreted more than 50 capsule videos) analyzed the images. One interpreted conventional capsule videos; the other, blinded to interpretation of the conventional images, interpreted CE-FICE images obtained at settings 1-3 (setting 1: red 595 nm, green 540 nm, blue 535 nm; setting 2: red 420 nm, green 520 nm, blue 530 nm; setting 3: red 595 nm, green 570 nm, blue 415 nm). Lesions were classified as angioectasia, erosion, ulceration, or tumor. Detectability was compared between the two modalities. Time taken to interpret the capsule videos was also determined. Results. Seventeen angioectasias were identified by conventional CE; 48 were detected by CE-FICE at setting 1, 45 at setting 2, and 24 at setting 3, with significant differences at settings 1 and 2 (p = 0.0003, p < 0.0001, respectively). Detection of erosion, ulceration, and tumor did not differ statistically between conventional CE and CE-FICE, nor did interpretation time (conventional CE 36 ± 6.9 min; CE-FICE setting 1, 36 ± 6.4 min; setting 2, 38 ± 5.8 min; setting 3, 35 ± 6.7 min). Conclusions. CE-FICE is superior in the lesion detection in comparison with conventional CE and improves detection of angioectasia
- …