453 research outputs found

    Analysis of equi-intensity curves and NU distribution of EAS

    Get PDF
    The distribution of the number of muons in extensive air showers (EAS) and the equi-intensity curves of EAS are analyzed on the basis of Monte Carlo simulation of various cosmic ray composition and the interaction models. Problems in the two best combined models are discussed

    Core structure of EAS in 10(15) to 10(17) eV

    Get PDF
    With the use of Akeno calorimeter, the attenuation of particles in concrete is analyzed as the function of the shower size of 10 to the 5th power to 10 to the 7th power. The attenuation length does not depend much on the shower size but depends a little on the shower age. The average value is approx. 150 g/sq cm for s = 0.5 to 0.85 and approx. 40 g/sq cm for s = 0.85 to 1.15. These values and their fluctuations are consistent with the equi-intensity curves of extensive air showers (EAS)

    Constructing new optimal entanglement witnesses

    Get PDF
    We provide a new class of indecomposable entanglement witnesses. In 4 x 4 case it reproduces the well know Breuer-Hall witness. We prove that these new witnesses are optimal and atomic, i.e. they are able to detect the "weakest" quantum entanglement encoded into states with positive partial transposition (PPT). Equivalently, we provide a new construction of indecomposable atomic maps in the algebra of 2k x 2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz et. al.Comment: 9 page

    Magnetic monopole search by 130 m(2)sr He gas proportional counter

    Get PDF
    A search experiment for cosmic ray magnetic monopoles was performed by means of atomic induction mechanism by using He mixture gas proportional counters of the calorimeter (130 square meters sr) at the center of the Akeno air shower array. In 3,482 hours operation no monopole candidate was observed. The upper limit of the monopole flux is 1.44 x 10 to the minus 13th power cm-z, sec -1, sr-1 (90% C.L.) for the velocity faster than 7 x 0.0001 c

    Facial structures for various notions of positivity and applications to the theory of entanglement

    Full text link
    In this expository note, we explain facial structures for the convex cones consisting of positive linear maps, completely positive linear maps, decomposable positive linear maps between matrix algebras, respectively. These will be applied to study the notions of entangled edge states with positive partial transposes and optimality of entanglement witnesses.Comment: An expository note. Section 7 and Section 8 have been enlarge

    Active oceanic spreading in the northern north Fiji basin : results of the NOFI cruise of R/V l'Atalante (Newstarmer project)

    Get PDF
    The South Pandora and the Tripartite Ridges are active spreading centers located in the northern part of the North Fiji Basin. These spreading centers were surveyed over a distance of 750 km during the NOFI cruise of R/V L'Atalante (August-September 1994) which was conducted in the frame of the french-japanese Newstarmer cooperation project. SIMRAD EM12-dual full coverage swath bathymetric and imagery data as well as airgun 6-channel seismic, magnetics and gravity profiles were recorded along an off-axis from 170°40'E to 178°E. Dredging and piston coring were also performed along and off-axis. The axial domain of the South Pandora Ridge is divided into 5 first-order segments characterized by contrasted morphologies. The average width of the active domain is 20 km and corresponds either to bathymetric highs or to deep elongated grabens. The bathymetric highs are volcanic constructions, locally faulted and rifted, which can obstruct totally the axial valley. The grabens show the typical morphology of slow spreading axes, with two steep walls flanking a deep axial valley. Elongated lateral ridges may be present on both sides of the grabens. Numerous volcanoes, up to several kilometers in diameter, occur on both flanks of the South Pandora Ridge. The Tripartite Ridge consists of three main segments showing a sigmoid shape. Major changes in the direction of the active zones are observed at the segment discontinuities. These discontinuities show various geometrical patterns which suggest complex transform relay zones. Preliminary analysis of seismic reflection profiles suggest that the Tripartite Ridge is a very young feature which propagates into an older oceanic domain characterized by a significant sedimentary cover. By contrast, a very thin to absent sedimentary cover is observed about 100 km on both flanks of the South Pandora Ridge active axis. The magnetic anomaly profiles give evidence of long and continuous lineations, parallel to the South Pandora Ridge spreading axis. (Résumé d'auteur

    Galileon Hairs of Dyson Spheres, Vainshtein's Coiffure and Hirsute Bubbles

    Full text link
    We study the fields of spherically symmetric thin shell sources, a.k.a. Dyson spheres, in a {\it fully nonlinear covariant} theory of gravity with the simplest galileon field. We integrate exactly all the field equations once, reducing them to first order nonlinear equations. For the simplest galileon, static solutions come on {\it six} distinct branches. On one, a Dyson sphere surrounds itself with a galileon hair, which far away looks like a hair of any Brans-Dicke field. The hair changes below the Vainshtein scale, where the extra galileon terms dominate the minimal gradients of the field. Their hair looks more like a fuzz, because the galileon terms are suppressed by the derivative of the volume determinant. It shuts off the `hair bunching' over the `angular' 2-sphere. Hence the fuzz remains dilute even close to the source. This is really why the Vainshtein's suppression of the modifications of gravity works close to the source. On the other five branches, the static solutions are all {\it singular} far from the source, and shuttered off from asymptotic infinity. One of them, however, is really the self-accelerating branch, and the singularity is removed by turning on time dependence. We give examples of regulated solutions, where the Dyson sphere explodes outward, and its self-accelerating side is nonsingular. These constructions may open channels for nonperturbative transitions between branches, which need to be addressed further to determine phenomenological viability of multi-branch gravities.Comment: 29+1 pages, LaTeX, 2 .pdf figure

    Energy-Momentum Localization for a Space-Time Geometry Exterior to a Black Hole in the Brane World

    Full text link
    In general relativity one of the most fundamental issues consists in defining a generally acceptable definition for the energy-momentum density. As a consequence, many coordinate-dependent definitions have been presented, whereby some of them utilize appropriate energy-momentum complexes. We investigate the energy-momentum distribution for a metric exterior to a spherically symmetric black hole in the brane world by applying the Landau-Lifshitz and Weinberg prescriptions. In both the aforesaid prescriptions, the energy thus obtained depends on the radial coordinate, the mass of the black hole and a parameter λ0\lambda_{0}, while all the momenta are found to be zero. It is shown that for a special value of the parameter λ0\lambda_{0}, the Schwarzschild space-time geometry is recovered. Some particular and limiting cases are also discussed.Comment: 10 pages, sections 1 and 3 slightly modified, references modified and adde
    corecore