182 research outputs found

    The Three Site Model at One-Loop

    Get PDF
    In this paper we compute the one-loop chiral logarithmic corrections to all O(p^4) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral- and gauge-fields, and using Landau gauge for the quantum fluctuations of the gauge fields. The results agree with our previous calculations of the chiral-logarithmic corrections to the S and T parameters in 't Hooft-Feynman gauge. The work reported here includes a complete evaluation of all one-loop divergences in an SU(2) x U(1) nonlinear sigma model, corresponding to an electroweak effective Lagrangian in the absence of custodial symmetry.Comment: 40 pages, nine included eps figures. Minor corrections mad

    Radiative Corrections to \zbb from Colored Scalars in a Model with Dynamical Symmetry Breaking

    Full text link
    Isodoublet color-octet scalar bosons appear in the low-energy limit of a natural extension of the Standard Model in which the electroweak symmetry is broken by a ttˉt\bar t condensate. We briefly discuss the model and show that radiative corrections (involving these scalars) to the branching ratio Rb=Γ(Zbbˉ)/Γ(Zhadrons)R_b=\Gamma (Z\rightarrow b\bar b)/\Gamma (Z\rightarrow {\rm hadrons}) are negative and thus place a stringent lower bound on the masses of the colored scalars. This turns out to be 400\sim 400 GeV with mt=150m_t=150 GeV and increases quadratically with mtm_t. It is emphasized that RbR_b is a parameter that is well-determined experimentally and that theoretical estimates are relatively free from uncertainties emanating from hadronic corrections and are comparatively insensitive to the value of the top mass.Comment: 9 pages + 3 figures (available upon request), TeX file. Saha Institute Preprint no. SINP-TNP/93-22 (December 1993

    Conformal Phase Transition and Fate of the Hidden Local Symmetry in Large N_f QCD

    Get PDF
    It is observed that the Hidden Local Symmetry (HLS) for the vector mesons in the ordinary QCD with smaller N_f plays the role of the "Higgsed magnetic gauge symmetry" for the Seiberg duality in the SUSY QCD. For large N_f where the conformal phase transition with chiral restoration and deconfinement is expected to take place, we find that the HLS model also exhibits the chiral restoration by the loop corrections (including the quadratic divergence) in a manner similar to that in the CP^{N-1} model, provided that the bare HLS Lagrangian respects the Georgi's vector limit at a certain N_f (\approx 7).Comment: 4 Pages (RevTeX), 3 PS figures are included Minor corrections are made for the introductory part. This is the version to appear in Physical Review Letter

    Gauged Nambu-Jona-Lasinio model with extra dimensions

    Full text link
    We investigate phase structure of the D (> 4)-dimensional gauged Nambu-Jona-Lasinio (NJL) model with δ(=D4)\delta(=D-4) extra dimensions compactified on TeV scale, based on the improved ladder Schwinger-Dyson (SD) equation in the bulk. We assume that the bulk running gauge coupling in the SD equation for the SU(N_c) gauge theory with N_f massless flavors is given by the truncated Kaluza-Klein effective theory and hence has a nontrivial ultraviolet fixed point (UVFP). We find the critical line in the parameter space of two couplings, the gauge coupling and the four-fermion coupling, which is similar to that of the gauged NJL model with fixed (walking) gauge coupling in four dimensions. It is shown that in the presence of such walking gauge interactions the four-fermion interactions become ``nontrivial'' even in higher dimensions, similarly to the four-dimensional gauged NJL model. Such a nontriviality holds only in the restricted region of the critical line (``nontrivial window'') with the gauge coupling larger than a non-vanishing value (``marginal triviality (MT)'' point), in contrast to the four-dimensional case where such a nontriviality holds for all regions of the critical line except for the pure NJL point. In the nontrivial window the renormalized effective potential yields a nontrivial interaction which is conformal invariant. The exisitence of the nontrivial window implies ``cutoff insensitivity'' of the physics prediction in spite of the ultraviolet dominance of the dynamics. In the formal limit D -> 4, the nontrivial window coincides with the known condition of the nontriviality of the four-dimensional gauged NJL model, 9/(2Nc)<NfNc<9/2Nc9/(2N_c) < N_f - N_c < 9/2 N_c.Comment: 34 pages, 6 figures, references added, to appear in Phys.Rev.D. The title is changed in PR

    Infrared enhanced analytic coupling and chiral symmetry breaking in QCD

    Get PDF
    We study the impact on chiral symmetry breaking of a recently developed model for the QCD analytic invariant charge. This charge contains no adjustable parameters, other than the QCD mass scale Λ\Lambda, and embodies asymptotic freedom and infrared enhancement into a single expression. Its incorporation into the standard form of the quark gap equation gives rise to solutions for the dynamically generated mass that display a singular confining behaviour at the origin. Using the Pagels-Stokar method we relate the obtained solutions to the pion decay constant fπf_{\pi}, and estimate the scale parameter Λ\Lambda, in the presence of four active quarks, to be about 880 MeV.Comment: 14 pages, 3 figures; to appear in J. Phys.

    Vector Manifestation and Fate of Vector Mesons in Dense Matter

    Full text link
    We describe in-medium properties of hadrons in dense matter near chiral restoration using a Wilsonian matching to QCD of an effective field theory with hidden local symmetry at the chiral cutoff Λ\Lambda. We find that chiral symmetry is restored in vector manifestation \`a la Harada and Yamawaki at a critical matter density ncn_c. We express the critical density in terms of QCD correlators in dense matter at the matching scale. In a manner completely analogous to what happens at the critical NfcN_f^c and at the critical temperature TcT^c, the vector meson mass is found to vanish (in the chiral limit) at chiral restoration. This result provides a support for Brown-Rho scaling predicted a decade ago.Comment: 14 pages, 2 figure

    Non-compact Lattice QED with Two Charges: Phase Diagram and Renormalization Group Flow

    Get PDF
    The phase diagram of non-compact lattice QED in four dimensions with staggered fermions of charges 1 and 1/2-1/2 is investigated. The renormalized charges are determined and found to be in agreement with perturbation theory. This is an indication that there is no continuum limit with non-vanishing renormalized gauge coupling, and that the theory has a validity bound for every finite value of the renormalized coupling. The renormalization group flow of the charges is investigated and an estimate for the validity bound as a function of the cut-off is obtained. Generalizing this estimate to all fermions in the Standard Model,it is found that a cut-off at the Planck scale implies that αR\alpha_R has to be less than 1/801/80. Due to spontaneous chiral symmetry breaking, strongly bound fermion-antifermion composite states are generated. Their spectrum is discussed.Comment: 35 pages, LATEX, 26 PostScript figures (uuencoded

    Asymptotic behavior in a model with Yukawa interaction from Schwinger-Dyson equations

    Full text link
    A system of Schwinger-Dyson equations for pseudoscalar four-dimensional Yukawa model in the two-particle approximation is investigated. The simplest iterative solution of the system corresponds to the mean-field approximation (or, equivalently, to the leading order of 1/N-expansion) and includes a non-physical Landau pole in deep-Euclidean region for the pseudoscalar propagator Δ\Delta. It is argued, however, that a full solution may be free from non-physical singularities and has the self-consistent asymptotic behavior pe2ΔClog4/5pe2M2p^2_e\Delta\simeq C\,\log^{-4/5}\frac{p^2_e}{M^2}. An approximate solution confirms the positivity of CC and the absence of Landau pole.Comment: 15 pages; journal versio
    corecore