45,160 research outputs found
Data curation standards and social science occupational information resources
Occupational information resources - data about the characteristics of different occupational positions - are widely used in the social sciences, across a range of disciplines and international contexts. They are available in many formats, most often constituting small electronic files that are made freely downloadable from academic web-pages. However there are several challenges associated with how occupational information resources are distributed to, and exploited by, social researchers. In this paper we describe features of occupational information resources, and indicate the role digital curation can play in exploiting them. We report upon the strategies used in the GEODE research project (Grid Enabled Occupational Data Environment, http://www.geode.stir.ac.uk). This project attempts to develop long-term standards for the distribution of occupational information resources, by providing a standardized framework-based electronic depository for occupational information resources, and by providing a data indexing service, based on e-Science middleware, which collates occupational information resources and makes them readily accessible to non-specialist social scientists
Data curation standards and the messy world of social science occupational information resources
Occupational information resources â data about the characteristics of different occupational positions â play a unique role in social science research. They are of relevance across diverse research disciplines and in numerous disparate contexts. They are also very widely available, typically freely downloadable from research-oriented academic web-pages. But they are also one of the most uncoordinated types of information resource that social scientists routinely come across. In this paper we describe issues in curating occupational information resources during the GEODE research project (Grid Enabled Occupational Data Environment, http:/www.geode.stir.ac.uk). This project attempts to develop long-term standards for the distribution of occupational information resources, by providing a standardised framework electronic depository for occupational information resources, and by providing a data-indexing service, premised upon eScience middleware, which collates occupational information resources and makes them readily accessible to non-specialist social scientists
Magnetoresistance and collective Coulomb blockade in super-lattices of ferromagnetic CoFe nanoparticles
We report on transport properties of millimetric super-lattices of CoFe
nanoparticles surrounded by organic ligands. R(T)s follow R(T) =
R_0.exp(T/T_0)^0.5 with T_0 ranging from 13 to 256 K. At low temperature I(V)s
follow I=K[(V-V_T)/V_T]^ksi with ksi ranging 3.5 to 5.2. I(V) superpose on a
universal curve when shifted by a voltage proportional to the temperature.
Between 1.8 and 10 K a high-field magnetoresistance with large amplitude and a
strong voltage-dependence is observed. Its amplitude only depends on the
magnetic field/temperature ratio. Its origin is attributed to the presence of
paramagnetic states present at the surface or between the nanoparticles. Below
1.8 K, this high-field magnetoresistance abruptly disappears and inverse
tunnelling magnetoresistance is observed, the amplitude of which does not
exceed 1%. At this low temperature, some samples display in their I(V)
characteristics abrupt and hysteretic transitions between the Coulomb blockade
regime and the conductive regime. The increase of the current during these
transitions can be as high as a factor 30. The electrical noise increases when
the sample is near the transition. The application of a magnetic field
decreases the voltage at which these transitions occur so magnetic-field
induced transitions are also observed. Depending on the applied voltage, the
temperature and the amplitude of the magnetic field, the magnetic-field induced
transitions are either reversible or irreversible. These abrupt and hysteretic
transitions are also observed in resistance-temperature measurements. They
could be the soliton avalanches predicted by Sverdlov et al. [Phys. Rev. B 64,
041302 (R), 2001] or could also be interpreted as a true phase transition
between a Coulomb glass phase to a liquid phase of electrons
Carrier and polarization dynamics in monolayer MoS2
In monolayer MoS2 optical transitions across the direct bandgap are governed
by chiral selection rules, allowing optical valley initialization. In time
resolved photoluminescence (PL) experiments we find that both the polarization
and emission dynamics do not change from 4K to 300K within our time resolution.
We measure a high polarization and show that under pulsed excitation the
emission polarization significantly decreases with increasing laser power. We
find a fast exciton emission decay time on the order of 4ps. The absence of a
clear PL polarization decay within our time resolution suggests that the
initially injected polarization dominates the steady state PL polarization. The
observed decrease of the initial polarization with increasing pump photon
energy hints at a possible ultrafast intervalley relaxation beyond the
experimental ps time resolution. By compensating the temperature induced change
in bandgap energy with the excitation laser energy an emission polarization of
40% is recovered at 300K, close to the maximum emission polarization for this
sample at 4K.Comment: 7 pages, 7 figures including supplementary materia
Two-Dimensional Controlled Syntheses of Polypeptide Molecular Brushes via N-Carboxyanhydride Ring-Opening Polymerization and Ring-Opening Metathesis Polymerization.
Well-defined molecular brushes bearing polypeptides as side chains were prepared by a "grafting through" synthetic strategy with two-dimensional control over the brush molecular architectures. By integrating N-carboxyanhydride ring-opening polymerizations (NCA ROPs) and ring-opening metathesis polymerizations (ROMPs), desirable segment lengths of polypeptide side chains and polynorbornene brush backbones were independently constructed in controlled manners. The N2 flow accelerated NCA ROP was utilized to prepare polypeptide macromonomers with different lengths initiated from a norbornene-based primary amine, and those macromonomers were then polymerized via ROMP. It was found that a mixture of dichloromethane and an ionic liquid were required as the solvent system to allow for construction of molecular brush polymers having densely-grafted peptide chains emanating from a polynorbornene backbone, poly(norbornene-graft-poly(ÎČ-benzyl-l-aspartate)) (P(NB-g-PBLA)). Highly efficient postpolymerization modification was achieved by aminolysis of PBLA side chains for facile installment of functional moieties onto the molecular brushes
- âŠ