21 research outputs found

    Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries

    Get PDF
    Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension

    Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals

    Get PDF
    A large-scale GWAS provides insight on diabetes-dependent genetic effects on the glomerular filtration rate, a common metric to monitor kidney health in disease.Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.</p

    Time trends, disease patterns and gender imbalance in the top 100 most cited articles in ophthalmology

    No full text
    10.1136/bjophthalmol-2018-312388British Journal of Ophthalmology103118-2

    The associations of objectively measured sleep duration and sleep disturbances with diabetic retinopathy

    No full text
    10.1016/j.diabres.2019.107967Diabetes Research and Clinical Practice159107967

    Associations between sleep duration, sleep quality and diabetic retinopathy

    Get PDF
    BACKGROUND: Abnormal durations of sleep have been associated with risk of diabetes. However, it is not clear if sleep duration is associated with diabetic retinopathy (DR). METHODS: In a cross-sectional study, we included 1,231 (Malay, n = 395; Indian, n = 836) adults (mean age 64.4 ± 9.0 years, 50.4% female) with diabetes from the second visit of two independent population-based cohort studies (2011-15) in Singapore. Self-reported habitual sleep duration was categorized as short (<6 h), normal (6≤ h <8), and long (≥8 h). Questionnaires were administered to detect risk of obstructive sleep apnea (OSA), excessive daytime sleepiness, and insomnia, all of which may indicate poor quality of sleep. The associations between sleep-related characteristics with moderate DR and vision-threatening DR (VTDR) were analysed using logistic regression models adjusted for potential confounders. RESULTS: Prevalence of moderate DR and VTDR in the study population were 10.5% and 6.3% respectively. The mean duration of sleep was 6.4 ± 1.5 h. Compared to normal sleep duration, both short and long sleep durations were associated with moderate DR with multivariable odds ratio (95% confidence interval) of 1.73 (1.03-2.89) and 2.17 (1.28-3.66) respectively. Long sleep duration (2.37 [1.16-4.89]), high risk of OSA (2.24 [1.09-4.75]), and excessive daytime sleepiness (3.27 [1.02-10.30]) were separately associated with VTDR. CONCLUSION: Sleep duration had a U-shaped association with moderate DR; long sleep duration, excessive daytime sleepiness and high risk of OSA were positively associated with VTDR

    Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error

    No full text
    Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia
    corecore