27,271 research outputs found

    Improvement of dielectric loss of doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices

    Get PDF
    Al2O3-Ba0.5Sr0.5TiO3 (Al2O3-BST) thin films, with different Al2O3 contents, were deposited on (100) LaAlO3 substrate by pulsed laser deposition (PLD) technique. The Al2O3-BST films was demosnstrated to be a suitable systems to fabricate ferroelectric thin films with low dielectric loss and higher figure of merit for tunable microwave devices. Pure BST thin films were also fabricated for comparison purpose. The films' structure and morphology were analyzed by X-ray diffractiopn and scanning electron microscopy, respectively; nad showed that the surface roughness for the Al2O3-BST films increased with the Al2O3 content. Apart from that, the broadening in the intensity peak in XRD result indicating the grain size of the Al2O3-BST films reduced with the increasing of Al2O3 dopant. We measured the dielctric properties of Al2O3-BST films with a home-made non-destructive dual resonator method at frequency ~ 7.7 GHZ. The effect of doped Al2O3 into BST thin films significantly reduced the dielectric constant, dielectric loss and tunability compare to pure BST thin film. Our result shows the figure of merit (K), used to compare the films with varied dielectric properties, increased with the Al2O3 content. Therefore Al2O3-BST films show the potential to be exploited in tunable microwave devices.Comment: 8 pages, 4 figures, 1 table. Accepted & tentatively for Feb 15 2004 issue, Journal of Applied Physic

    Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

    Full text link
    We have studied an anomalous microwave (mw) response of superconducting YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s}) show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and X_{s} were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_{c}, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_{s} is almost linear at fixed H_{dc} with different magnitudes (H_{c}). The impedance plane analysis demonstrates that r_{H}, which is defined as the ratio of the change in R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1 at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica

    Low-power and high-detectivity Ge photodiodes by in-situ heavy As doping during Ge-on-Si seed layer growth

    Get PDF
    Germanium (Ge)-based photodetectors have become one of the mainstream components in photonic-integrated circuits (PICs). Many emerging PIC applications require the photodetectors to have high detectivity and low power consumption. Herein, we demonstrate high-detectivity Ge vertical p-i-n photodiodes on an in-situ heavily arsenic (As)-doped Ge-on-Si platform. The As doping was incorporated during the initial Ge-on-Si seed layer growth. The grown film exhibits an insignificant up-diffusion of the As dopants. The design results in a ∼45× reduction on the dark current and consequently a ∼5× enhancement on the specific detectivity (D*) at low reverse bias. The improvements are mainly attributed to the improved epi-Ge crystal quality and the narrowing of the device junction depletion width. Furthermore, a significant deviation on the AsH3 flow finds a negligible effect on the D* enhancement. This unconventional but low-cost approach provides an alternative solution for future high-detectivity and low-power photodiodes in PICs. This method can be extended to the use of other n-type dopants (e.g., phosphorus (P) and antimony (Sb)) as well as to the design of other types of photodiodes (e.g., waveguide-integrated)

    Nuclear isotope thermometry

    Get PDF
    We discuss different aspects which could influence temperatures deduced from experimental isotopic yields in the multifragmentation process. It is shown that fluctuations due to the finite size of the system and distortions due to the decay of hot primary fragments conspire to blur the temperature determination in multifragmentation reactions. These facts suggest that caloric curves obtained through isotope thermometers, which were taken as evidence for a first-order phase transition in nuclear matter, should be investigated very carefully.Comment: 9 pages, 7 figure

    Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs

    Full text link
    The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter
    corecore