7 research outputs found

    RIS-Aided Wireless Communications: Prototyping, Adaptive Beamforming, and Indoor/Outdoor Field Trials

    Full text link
    The prospects of using a Reconfigurable Intelligent Surface (RIS) to aid wireless communication systems have recently received much attention from academia and industry. Most papers make theoretical studies based on elementary models, while the prototyping of RIS-aided wireless communication and real-world field trials are scarce. In this paper, we describe a new RIS prototype consisting of 1100 controllable elements working at 5.8 GHz band. We propose an efficient algorithm for configuring the RIS over the air by exploiting the geometrical array properties and a practical receiver-RIS feedback link. In our indoor test, where the transmitter and receiver are separated by a 30 cm thick concrete wall, our RIS prototype provides a 26 dB power gain compared to the baseline case where the RIS is replaced by a copper plate. A 27 dB power gain was observed in the short-distance outdoor measurement. We also carried out long-distance measurements and successfully transmitted a 32 Mbps data stream over 500 m. A 1080p video was live-streamed and it only played smoothly when the RIS was utilized. The power consumption of the RIS is around 1 W. Our paper is vivid proof that the RIS is a very promising technology for future wireless communications.Comment: 13 pages, 18 figures, submitte

    Effect of lipids complexes on controlling ethylene gas release from V-type starch

    No full text
    In this study, the effects of n-decanoic acid (n-CA) or coconut oil (CCN) on the release of ethylene from V-type starch (VS) were investigated. Results of differential scanning calorimetry showed that adding n-CA or CCN into VS generated a starch–lipid complex. Results of scanning electron microscopy and confocal laser scanning microscopy indicated that VS granules aggregated but oil films appeared on the surface of the VS aggregates when oil was added. The addition of n-CA or CCN effectively delayed the release of ethylene in VS, and the deceleration effect gradually became obvious with the increase in oil addition. These results suggest that the formation of starch–lipid complexes, the aggregation of starch granules, and the presence of oil films play important roles in slowing down the release of ethylene

    Nyströmformer: A Nyström-based Algorithm for Approximating Self-Attention

    No full text
    Transformers have emerged as a powerful tool for a broad range of natural language processing tasks. A key component that drives the impressive performance of Transformers is the self-attention mechanism that encodes the influence or dependence of other tokens on each specific token. While beneficial, the quadratic complexity of self-attention on the input sequence length has limited its application to longer sequences - a topic being actively studied in the community. To address this limitation, we propose Nyströmformer - a model that exhibits favorable scalability as a function of sequence length. Our idea is based on adapting the Nyström method to approximate standard self-attention with O(n) complexity. The scalability of Nyströmformer enables application to longer sequences with thousands of tokens. We perform evaluations on multiple downstream tasks on the GLUE benchmark and IMDB reviews with standard sequence length, and find that our Nyströmformer performs comparably, or in a few cases, even slightly better, than standard self-attention. On longer sequence tasks in the Long Range Arena (LRA) benchmark, Nyströmformer performs favorably relative to other efficient self-attention methods. Our code is available at https://github.com/mlpen/Nystromformer

    Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment

    Get PDF
    An overview about one thermodynamic database of multi-component Mg alloys is given in this work. This thermodynamic database includes thermodynamic descriptions for 145 binary systems and 48 ternary systems in 23-component (Mg–Ag–Al–Ca–Ce–Cu–Fe–Gd–K–La–Li–Mn–Na–Nd–Ni–Pr–Si–Sn–Sr–Th–Y–Zn–Zr) system. First, the major computational and experimental tools to establish the thermodynamic database of Mg alloys are briefly described. Subsequently, among the investigated binary and ternary systems, representative binary and ternary systems are shown to demonstrate the major feature of the database. Finally, application of the thermodynamic database to solidification simulation and selection of heat treatment schedule is described

    METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells

    No full text
    Summary: γδ T cells make key contributions to tissue physiology and immunosurveillance through two main functionally distinct subsets, γδ T1 and γδ T17. m6A methylation plays critical roles in controlling numerous aspects of mRNA metabolism that govern mRNA turnover, gene expression, and cellular functional specialization; however, its role in γδ T cells remains less well understood. Here, we find that m6A methylation controls the functional specification of γδ T17 vs. γδ T1 cells. Mechanistically, m6A methylation prevents the formation of endogenous double-stranded RNAs and promotes the degradation of Stat1 transcripts, which converge to prevent over-activation of STAT1 signaling and ensuing inhibition of γδ T17. Deleting Mettl3, the key enzyme in the m6A methyltransferases complex, in γδ T cells reduces interleukin-17 (IL-17) production and ameliorates γδ T17-mediated psoriasis. In summary, our work shows that METTL3-mediated m6A methylation orchestrates mRNA stability and double-stranded RNA (dsRNA) contents to equilibrate γδ T1 and γδ T17 cells
    corecore