12,005 research outputs found

    Chinese Public Attitudes Toward Epilepsy (PATE) scale: translation and psychometric evaluation

    Get PDF
    None of the quantitative scale for public attitudes toward epilepsy was translated to Chinese language. This study aimed to translate and test the validity and reliability of a Chinese version of the Public Attitudes Toward Epilepsy (PATE) scale. Methods: The translation was performed according to standard principles and tested in 140 Chinese-speaking adults aged more than 18 years for psychometric validation. Results: The items in each domain had similar standard deviations (equal item variance), ranged from 0.85-0.95 in personal domain and 0.75-1.04 in general domain. The correlation between an item and its domain was 0.4 and above for all, and higher than the correlation with the other domain. Multitrait analysis showed the Chinese PATE had a similar variance, floor and ceiling effects, and relative relationship between the domains, as the original PATE. The Chinese PATE scale showed a similar correlation with almost all demographic variable except age. Item means were generally clustered in the factor analysis as hypothesized. The Cronbach’s α values was within acceptable range (0.773) in the personal domain and satisfactory range (0.693) in the general domain. Conclusion: The Chinese PATE scale is a validated and reliable translated version in measuring the public attitudes toward epilepsy

    Prediction of Onset Fluidization Using Critical Rayleigh Number.

    Get PDF
    The incipient instability in gas fluidized bed has not been fully understood despite extensive studies were conducted. A new transient theory was proposed by adopting the principles advanced by Tan and Thorpe (1992 and 1996) and Tan et al. (2003), and this was verified by computational fluid dynamic (CFD) simulations. The theory of instability in porous media has two functions. One involved the molecular diffusion of a microscopic mass flux in the gas phase with potential adverse density gradient, buoyancy convection in gas will occur, but the solid particles will stationary. If t he solid p articles w ere subjected t o very high m ass fluxes which i s characterized by its high gas velocity such as those exceeding the minimum velocity of fluidization, then the buoyancy force o f t he p articles will b e overcome and the solids will be moved and fluidized almost instantaneously 2D time dependent simulations were conducted using a CFD package - FLUENT for gas diffusion in porous media to observe buoyancy convection and also the incipient instability in fluidized bed, using various gas pairs, mass fluxes and particles sizes. The simulation conducted was validated and verified by comparison with the experimental data from literature. As a prelude to these studies, transient convection induced by gas diffusion in another gas was conducted, so as to understand fully the instability induced by mass diffusion. The simulated critical Rayleigh number were found to be 531 and 707 for top-down and bottom-up gas-gas diffusion respectively, which were very close to the theoretical value of 669 and 817. For transient buoyancy instability induced by gas diffusion in porous media, the average simulated critical Rayleigh number was found to be 26.7, which agreed very well with the theoretical value of 27.1. The simulated onset time of buoyancy convection were also found to be in good agreement with the predicted value. Incipient instability in fluidized bed is caused by fluid velocity higher than the minimum fluidization velocity, U,f. The simulations of incipient instability showed that the bed behavior was dependent on the fluid velocity and the particle size and porosity. The incipient instability was preceded by the gas or pressure saturation of the interstices, induced a high momentum force due to the high mass flux which mobilized and lifted the particles once the critical Rayleigh number was exceeded. The simulated critical Rayleigh number was found to be 30.4, which agreed with the theoretical value of 27.1 for buoyancy instability in porous media. The simulated critical times o f t he incipient instability in fluidized bed were in good agreement with the predicted values and reported experiments in literature. The bed pressure drop, expansion ratio and void fraction after the fluidization were successfully simulated and were found to be in good agreement with experiments and theoretical values

    Theory And Simulation Of The Incipient Gas-Solid Fluidized Bed

    Get PDF
    The incipient instability in gas fluidized bed has not been fully understood despite extensive studies were conducted. A new transient theory was proposed by adopting the principles advanced by Tan and Thorpe (1992 and 1996) and Tan et al. (2003), and this was verified by computational fluid dynamic (CFD) simulations. The theory of instability in porous media has two functions. One involved the molecular diffusion of a microscopic mass flux in the gas phase with potential adverse density gradient, buoyancy convection in gas will occur, but the solid particles will stationary. If the solid particles were subjected to very high mass fluxes which is characterized by its high gas velocity such as those exceeding the minimum velocity of fluidization, then the buoyancy force of the particles will be overcome and the solids will be moved and fluidized almost instantaneously. 2D time dependent simulations were conducted using a CFD package - FLUENT for gas diffusion in porous media to observe buoyancy convection and also the incipient instability in fluidized bed, using various gas pairs, mass fluxes and particles sizes. As a prelude to these studies, transient convection induced by gas diffusion in another gas was conducted, so as to understand fully the instability induced by mass diffusion. The simulated critical Rayleigh number were found to be 531 and 707 for top-down and bottom-up gas-gas diffusion respectively, which were very close to the theoretical value of 669 and 817. For transient buoyancy instability induced by gas diffusion in porous media, the average simulated critical Rayleigh number was found to be 26.7, which agreed very well with the theoretical value of 27.1. The simulated onset time of buoyancy convection were also found to be in good agreement with the predicted value. Very often gas velocity is used in designing a fluidized bed, despite that the instability of the bed is actually induced by the mass fluxes of the gas which provide the required velocity. Incipient instability in fluidized bed is caused by fluid velocity higher than the minimum fluidization velocity, Umf. The simulations of incipient instability showed that the bed behavior was dependent on the fluid velocity and the particle size and porosity. The incipient instability was preceded by the gas or pressure saturation of the interstices, induced a high momentum force due to the high mass flux which mobilized and lifted the particles once the critical Rayleigh number was exceeded. The simulated critical Rayleigh number was found to be 30.4, which agreed with the theoretical value of 27.1 for buoyancy instability in porous media. The simulated critical times of the incipient instability in fluidized bed were in good agreement with the predicted values and reported experiments in literature. The bed pressure drop, expansion ratio and void fraction after the fluidization were successfully simulated and were found to be in good agreement with experiments and theoretical values

    Corporate governance structure and performance of Malaysian listed companies

    Get PDF
    Corporate governance plays an important role in protecting shareholders' interest. Securities Commission Malaysia has consistently revised the Malaysian Code of Corporate Governance to improve the corporate governance in all companies. Most of the principles and recommendations in Malaysia Code of Corporate Governance were largely derived from recommendations in developed countries. It is time to explore whether the various best practices and recommendations have influence on performance of Malaysian listed companies. In order to examine the influence of corporate governance variables, the linear regression was performed by focusing on board characteristic, chief executive officer duality, shareholding structure and directors' shareholding structure of 75 companies listed in Main Market under Bursa Malaysia from 2009 to 2013. The analysis results revealed a significant relationship between corporate governance variables (board size, chief executive officer duality, composition of non-executive directors, composition of directors with multiple directorships and concentrated shareholdings) and performance of the company when using market measure (Tobin's Q ratio). However, the findings revealed that only board size and concentrated shareholding had significant relationship with performance when using accounting measure (return on assets). In a nutshell, the mixed results show Malaysian companies are more concerns on future performance and growth opportunities which reflect in share pric

    Theory of high energy features in angle-resolved photo-emission spectra of hole-doped cuprates

    Full text link
    The recent angle-resolved photoemission measurements performed up to binding energies of the order of 1eV reveals a very robust feature: the nodal quasi-particle dispersion breaks up around 0.3-0.4eV and reappears around 0.6-0.8eV. The intensity map in the energy-momentum space shows a waterfall like feature between these two energy scales. We argue and numerically demonstrate that these experimental features follow naturally from the strong correlation effects built in the familiar t-J model, and reflect the connection between the fermi level and the lower Hubbard band. The results were obtained by a mean field theory that effectively projects electrons by quantum interference between two bands of fermions instead of binding slave particles.Comment: 5 pages 2 fig

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [1,1][-1,1]-valued dd-resilient function in 1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between 1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that 1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas
    corecore