736 research outputs found

    Lysophospholipid (LPA) receptors in GtoPdb v.2023.1

    Get PDF
    Lysophosphatidic acid (LPA) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Lysophospholipid Receptors [62, 23, 91, 144]) are activated by the endogenous phospholipid LPA. The first receptor, LPA1, was identified as ventricular zone gene-1 (vzg-1) [46], This discovery represented the beginning of the de-orphanisation of members of the endothelial differentiation gene (edg) family, as other LPA and sphingosine 1-phosphate (S1P) receptors were found. Five additional LPA receptors (LPA2,3,4,5,6) have since been identified [91] and their gene nomenclature codified for human LPAR1, LPAR2, etc. (HUGO Gene Nomenclature Committee, HGNC) and Lpar1, Lpar2, etc. for mice (Mouse Genome Informatics Database, MGI) to reflect species and receptor function of their corresponding proteins. The crystal structure of LPA1 [17, 80, 2] and LPA6 [128] are solved and indicate that LPA accesses the extracellular binding pocket, consistent with its proposed delivery via autotaxin [17]. These studies have also implicated cross-talk with endocannabinoids via phosphorylated intermediates that can also activate these receptors. The binding affinities to LPA1 of unlabeled, natural LPA and anandamide phosphate (AEAp) were measured using backscattering interferometry (pKd = 9) [92, 115]. Utilization of this method indicated affinities that were 77-fold lower than when measured using radioactivity-based protocols [143]. Targeted deletion of LPA receptors has clarified signalling pathways and identified physiological and pathophysiological roles. Multiple groups have independently published validation of all six LPA receptors described in these tables, and further validation was achieved using a distinct read-out via a novel TGFα "shedding* assay [54]. LPA has been proposed to be a ligand for GPR35 [103], supported by a study revealing that LPA modulates macrophage function through GPR35 [60]. However chemokine (C-X-C motif) ligand 17 (CXCL17) is reported to be a ligand for GPR35/CXCR8 [85]. Moreover, LPA has also been described as an agonist for the transient receptor potential (Trp) ion channels TRPV1 [96] and TRPA1 [65]. All of these proposed non-GPCR receptor identities require confirmation and are not currently recognized as bona fide LPA receptors

    Lysophospholipid (S1P) receptors in GtoPdb v.2021.2

    Get PDF
    Sphingosine 1-phosphate (S1P) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Lysophospholipid receptors [89]) are activated by the endogenous lipid sphingosine 1-phosphate (S1P). Originally cloned as orphan members of the endothelial differentiation gene (edg) family [16, 112], the receptors are currently designated as S1P1R through S1P5R [69, 16, 112]. Their gene nomenclature has been codified as human S1PR1, S1PR2, etc. (HUGO Gene Nomenclature Committee, HGNC) and S1pr1, S1pr2, etc. for mice (Mouse Genome Informatics Database, MGI) to reflect species and receptor function. All S1P receptors have been knocked-out in mice constitutively and in some cases, conditionally. S1PRs, particularly S1P1, are expressed throughout all mammalian organ systems. Ligand delivery occurs via two known carriers (or "chaperones"): albumin and HDL-bound apolipoprotein M (ApoM), the latter of which elicits biased agonist signaling by S1P1 in multiple cell types [18, 49]. The five S1PRs, two chaperones, and active cellular metabolism have complicated analyses of receptor ligand binding in native systems. Signaling pathways and physiological roles have been characterized through radioligand binding in heterologous expression systems, targeted deletion of the different S1PRs, and most recently, mouse models that report in vivo S1P1R activation [94, 96]. A crystal structure of an S1P1-T4 fusion protein confirmed aspects of ligand binding, specificity, and receptor activation, determined previously through biochemical and genetic studies [65, 17]. fingolimod (FTY720), the first FDA-approved drug to target any of the lysophospholipid receptors, binds as a phosphorylated metabolite to four of the five S1PRs, and was the first oral therapy for multiple sclerosis (MS) [33]. siponimod and ozanimod that target S1P1 and S1P5 are also FDA approved for the treatment of various MS forms [16, 112]. The mechanisms of action of fingolimod and other S1PR-modulating drugs now in development include binding S1PRs in multiple organ systems, e.g., immune and nervous systems, although the precise nature of their receptor interactions requires clarification [129, 35, 59, 60]

    Lysophospholipid (LPA) receptors in GtoPdb v.2021.2

    Get PDF
    Lysophosphatidic acid (LPA) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Lysophospholipid Receptors [55, 19, 82, 129]) are activated by the endogenous phospholipid LPA. The first receptor, LPA1, was identified as ventricular zone gene-1 (vzg-1) [40], This discovery represented the beginning of the de-orphanisation of members of the endothelial differentiation gene (edg) family, as other LPA and sphingosine 1-phosphate (S1P) receptors were found. Five additional LPA receptors (LPA2,3,4,5,6) have since been identified [82] and their gene nomenclature codified for human LPAR1, LPAR2, etc. (HUGO Gene Nomenclature Committee, HGNC) and Lpar1, Lpar2, etc. for mice (Mouse Genome Informatics Database, MGI) to reflect species and receptor function of their corresponding proteins. The crystal structure of LPA1 is solved and indicates that LPA accesses the extracellular binding pocket, consistent with its proposed delivery via autotaxin [13]. These studies have also implicated cross-talk with endocannabinoids via phosphorylated intermediates that can also activate these receptors. The binding affinities to LPA1 of unlabeled, natural LPA and anandamide phosphate (AEAp) were measured using backscattering interferometry (pKd = 9) [83, 104]. Utilization of this method indicated affinities that were 77-fold lower than when measured using radioactivity-based protocols [128]. Targeted deletion of LPA receptors has clarified signalling pathways and identified physiological and pathophysiological roles. Multiple groups have independently published validation of all six LPA receptors described in these tables, and further validation was achieved using a distinct read-out via a novel TGFα "shedding* assay [48]. LPA LPA has been proposed to be a ligand for GPCR35 [94], supported by a recent study revealing that LPA modulates macrophage function through GPR35 [54]. However chemokine (C-X-C motif) ligand 17 (CXCL17) is reported to be a ligand for GPR35/CXCR8 [76]. Moreover, LPA has also been described as an agonist for the transient receptor potential (Trp) ion channels TRPV1 [87] and TRPA1 [58]. All of these proposed non-GPCR receptor identities require confirmation and are not currently recognized as bona fide LPA receptors

    Lysophospholipid (LPA) receptors in GtoPdb v.2021.3

    Get PDF
    Lysophosphatidic acid (LPA) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Lysophospholipid Receptors [55, 19, 82, 129]) are activated by the endogenous phospholipid LPA. The first receptor, LPA1, was identified as ventricular zone gene-1 (vzg-1) [40], This discovery represented the beginning of the de-orphanisation of members of the endothelial differentiation gene (edg) family, as other LPA and sphingosine 1-phosphate (S1P) receptors were found. Five additional LPA receptors (LPA2,3,4,5,6) have since been identified [82] and their gene nomenclature codified for human LPAR1, LPAR2, etc. (HUGO Gene Nomenclature Committee, HGNC) and Lpar1, Lpar2, etc. for mice (Mouse Genome Informatics Database, MGI) to reflect species and receptor function of their corresponding proteins. The crystal structure of LPA1 is solved and indicates that LPA accesses the extracellular binding pocket, consistent with its proposed delivery via autotaxin [13]. These studies have also implicated cross-talk with endocannabinoids via phosphorylated intermediates that can also activate these receptors. The binding affinities to LPA1 of unlabeled, natural LPA and anandamide phosphate (AEAp) were measured using backscattering interferometry (pKd = 9) [83, 104]. Utilization of this method indicated affinities that were 77-fold lower than when measured using radioactivity-based protocols [128]. Targeted deletion of LPA receptors has clarified signalling pathways and identified physiological and pathophysiological roles. Multiple groups have independently published validation of all six LPA receptors described in these tables, and further validation was achieved using a distinct read-out via a novel TGFα "shedding* assay [48]. LPA has been proposed to be a ligand for GPR35 [94], supported by a study revealing that LPA modulates macrophage function through GPR35 [54]. However chemokine (C-X-C motif) ligand 17 (CXCL17) is reported to be a ligand for GPR35/CXCR8 [76]. Moreover, LPA has also been described as an agonist for the transient receptor potential (Trp) ion channels TRPV1 [87] and TRPA1 [58]. All of these proposed non-GPCR receptor identities require confirmation and are not currently recognized as bona fide LPA receptors

    Development and validation of prediction models to estimate risk of primary total hip and knee replacements using data from the UK : two prospective open cohorts using the UK Clinical Practice Research Datalink

    Get PDF
    Altres ajuts: This study was funded by NIHR School for Primary Care Research Funding Round 9 (Project No: 258) and by Public Health England. CDM is funded by the NIHR Collaborations for Leadership in Applied Health Research and Care West Midlands, the NIHR School for Primary Care Research and a NIHR Research Professorship in General Practice (NIHR-RP-2014-04-026). JE is a NIHR Academic Clinical Lecturer. The views expressed in this paper are those of the author(s) and not necessarily those of the NHS, the NIHR, Public Health England, or the Department of Health. This research is funded by the National Institute for Health Research School for Primary Care Research (NIHR SPCR).The ability to efficiently and accurately predict future risk of primary total hip and knee replacement (THR/TKR) in earlier stages of osteoarthritis (OA) has potentially important applications. We aimed to develop and validate two models to estimate an individual's risk of primary THR and TKR in patients newly presenting to primary care. We identified two cohorts of patients aged ≄40 years newly consulting hip pain/OA and knee pain/OA in the Clinical Practice Research Datalink. Candidate predictors were identified by systematic review, novel hypothesis-free 'Record-Wide Association Study' with replication, and panel consensus. Cox proportional hazards models accounting for competing risk of death were applied to derive risk algorithms for THR and TKR. Internal-external cross-validation (IECV) was then applied over geographical regions to validate two models. 45 predictors for THR and 53 for TKR were identified, reviewed and selected by the panel. 301 052 and 416 030 patients newly consulting between 1992 and 2015 were identified in the hip and knee cohorts, respectively (median follow-up 6 years). The resultant model C-statistics is 0.73 (0.72, 0.73) and 0.79 (0.78, 0.79) for THR (with 20 predictors) and TKR model (with 24 predictors), respectively. The IECV C-statistics ranged between 0.70-0.74 (THR model) and 0.76-0.82 (TKR model); the IECV calibration slope ranged between 0.93-1.07 (THR model) and 0.92-1.12 (TKR model). Two prediction models with good discrimination and calibration that estimate individuals' risk of THR and TKR have been developed and validated in large-scale, nationally representative data, and are readily automated in electronic patient records

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Development and validation of prediction models to estimate risk of primary total hip and knee replacements using data from the UK: two prospective open cohorts using the UK Clinical Practice Research Datalink

    Get PDF
    Abstract Objectives The ability to efficiently and accurately predict future risk of primary total hip and knee replacement (THR/TKR) in earlier stages of osteoarthritis (OA) has potentially important applications. We aimed to develop and validate two models to estimate an individual’s risk of primary THR and TKR in patients newly presenting to primary care. Methods We identified two cohorts of patients aged ≄40 years newly consulting hip pain/OA and knee pain/OA in the Clinical Practice Research Datalink. Candidate predictors were identified by systematic review, novel hypothesis-free ‘Record-Wide Association Study’ with replication, and panel consensus. Cox proportional hazards models accounting for competing risk of death were applied to derive risk algorithms for THR and TKR. Internal–external cross-validation (IECV) was then applied over geographical regions to validate two models. Results 45 predictors for THR and 53 for TKR were identified, reviewed and selected by the panel. 301 052 and 416 030 patients newly consulting between 1992 and 2015 were identified in the hip and knee cohorts, respectively (median follow-up 6 years). The resultant model C-statistics is 0.73 (0.72, 0.73) and 0.79 (0.78, 0.79) for THR (with 20 predictors) and TKR model (with 24 predictors), respectively. The IECV C-statistics ranged between 0.70–0.74 (THR model) and 0.76–0.82 (TKR model); the IECV calibration slope ranged between 0.93–1.07 (THR model) and 0.92–1.12 (TKR model). Conclusions Two prediction models with good discrimination and calibration that estimate individuals’ risk of THR and TKR have been developed and validated in large-scale, nationally representative data, and are readily automated in electronic patient records. This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made

    Common Data Elements to Facilitate Sharing and Re-use of Participant-Level Data: Assessment of Psychiatric Comorbidity Across Brain Disorders

    Get PDF
    The Ontario Brain Institute\u27s “Brain-CODE” is a large-scale informatics platform designed to support the collection, storage and integration of diverse types of data across several brain disorders as a means to understand underlying causes of brain dysfunction and developing novel approaches to treatment. By providing access to aggregated datasets on participants with and without different brain disorders, Brain-CODE will facilitate analyses both within and across diseases and cover multiple brain disorders and a wide array of data, including clinical, neuroimaging, and molecular. To help achieve these goals, consensus methodology was used to identify a set of core demographic and clinical variables that should be routinely collected across all participating programs. Establishment of Common Data Elements within Brain-CODE is critical to enable a high degree of consistency in data collection across studies and thus optimize the ability of investigators to analyze pooled participant-level data within and across brain disorders. Results are also presented using selected common data elements pooled across three studies to better understand psychiatric comorbidity in neurological disease (Alzheimer\u27s disease/amnesic mild cognitive impairment, amyotrophic lateral sclerosis, cerebrovascular disease, frontotemporal dementia, and Parkinson\u27s disease)

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • 

    corecore