429 research outputs found

    Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input

    Full text link
    Non-autoregressive translation (NAT) models, which remove the dependence on previous target tokens from the inputs of the decoder, achieve significantly inference speedup but at the cost of inferior accuracy compared to autoregressive translation (AT) models. Previous work shows that the quality of the inputs of the decoder is important and largely impacts the model accuracy. In this paper, we propose two methods to enhance the decoder inputs so as to improve NAT models. The first one directly leverages a phrase table generated by conventional SMT approaches to translate source tokens to target tokens, which are then fed into the decoder as inputs. The second one transforms source-side word embeddings to target-side word embeddings through sentence-level alignment and word-level adversary learning, and then feeds the transformed word embeddings into the decoder as inputs. Experimental results show our method largely outperforms the NAT baseline~\citep{gu2017non} by 5.115.11 BLEU scores on WMT14 English-German task and 4.724.72 BLEU scores on WMT16 English-Romanian task.Comment: AAAI 201

    Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign

    Get PDF
    In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module has been developed with detailed consideration of aerosol size, composition, and mixing. The module has been coupled into the WRF-CHEM model to calculate the aerosol optical properties, including optical depth, single scattering albedo, and asymmetry factor. Calculated aerosol optical properties are in good agreement with the surface observations and aircraft and satellite measurements during daytime. In general, the photolysis rates are reduced due to the absorption by carbonaceous aerosols, particularly in the early morning and late afternoon hours with a long aerosol optical path. However, with the growth of aerosol particles and the decrease of the solar zenith angle around noontime, aerosols can slightly enhance photolysis rates when ultraviolet (UV) radiation scattering dominates UV absorption by aerosols at the lower-most model layer. The changes in photolysis rates due to aerosols lead to about 2–17 % surface ozone reduction during daytime in the urban area in Mexico City with generally larger reductions during early morning hours near the city center, resulting in a decrease of OH level by about 9 %, as well as a decrease in the daytime concentrations of nitrate and secondary organic aerosols by 5–6 % on average. In addition, the rapid aging of black carbon aerosols and the enhanced absorption of UV radiation by organic aerosols contribute substantially to the reduction of photolysis rates.National Science Foundation (U.S.). Atmospheric Chemistry Program (ATM-0528227)National Science Foundation (U.S.). Atmospheric Chemistry Program (ATM-0810931)Molina Center for Energy and the Environmen

    The effects of three different grinding methods in DNA extraction of cowpea (Vigna unguiculata L. Walp)

    Get PDF
    Rapid DNA extraction is a prerequisite for molecular studies. Generally, plant tissue is ground in liquid nitrogen to isolate DNA; but, liquid nitrogen is dangerous and volatile. Besides, liquid nitrogen is not always available in many developing countries. To investigate if high quality DNA could be obtained for downstream PCR analysis without liquid nitrogen, the cowpea DNA was extracted by Hexadecyl trimethyl ammonium bromide cetyl trimethylammonium bromide (CTAB) method and sodium dodecyl sulphate (SDS) method, respectively, each with three different grinding methods, including ground in liquid nitrogen, in preheated mortar and in non-preheated mortar. The DNA was compared according to their yield, purity, integrity and functionality. The results showed that high quality DNA could be obtained by three grinding methods both in CTAB method and SDS method. Without liquid nitrogen, grinding plant tissue in preheated or non-preheated mortar with extraction buffer to extract DNA is feasible.Keywords: Cowpea (Vigna unguiculata), grinding method, liquid nitrogen, DNA extractionAfrican Journal of Biotechnology Vol. 12(16), pp. 1946-195
    • …
    corecore