33 research outputs found

    Evaluation of anti-fatigue property of Porphyridium cruentum in mice

    Get PDF
    Purpose: To evaluate the potential effects of Porphyridium cruentum (PC) on fatigue induced by forced swimming test in mice. Methods: Mice were randomly divided into normal control group (NC, i.e., untreated non-swimming); model control group (MC, untreated swimming); Spirulina treated group (SP, 800 mg/kg); PC-treated groups (50, 100, and 200 mg/kg), respectively. After intragastric administration for 14 consecutive days, a weight-bearing swimming experiment was conducted for the mice, and the biochemical indicators related to fatigue were examined, including exhaustive swimming time, glucose levels (Glu), hepatic glycogen contents (HG), muscle glycogen contents (MG), glutathione peroxidase activities (GSH-Px), creatine kinase (CK), malondialdehyde (MDA), urea nitrogen levels (SUN), lactate dehydrogenase activities (LDH), lactic acid (LA) as well as superoxide dismutase (SOD). Results: PC significantly prolonged the swimming endurance time compared to MC. After PC treatment, Glu, HG and MG were effectively increased dose-dependently, SUN, LA, LDH and CK levels in serum were significantly reduced. Moreover, PC treatment elevated the bioactivities of two antioxidant enzymes, namely, GSH-Px and SOD, while MDA content decreased when compared to MC group. Conclusion: These results indicate that PC exhibits strong anti-fatigue effect. Thus, PC may be suitable for incorporation in functional food to counter fatigue

    Scoring System for Tumor-Infiltrating Lymphocytes and Its Prognostic Value for Gastric Cancer

    Get PDF
    The tumor microenvironment (TME) is the internal environment of malignant tumor progression, and the host antitumor immune response and normal tissue destruction occur in the TME. Tumor-infiltrating lymphocytes (TIL) is a crucial component of the TME and reflect the host antitumor immune response. The purpose of this study was to discuss the methodology for TIL evaluation and assess the prognostic value of TIL in gastric cancer. In total, we reviewed 1,033 gastrectomy cases between 2002 and 2008 at the Third Affiliated Hospital of Soochow University. To understand the prognostic value of TIL in gastric cancer (GC), TIL were assessed by optical microscopy, and verified by immunohistochemistry. There is no current consensus on TIL scoring in GC. In this study, we discussed a TIL evaluation system that includes an analysis of the amount and percentage of TIL in a tumor. Ultimately, 439 (52.7%) cases showed high levels of TIL and 394 (47.3%) cases had low levels. There was a statistically significant relationship among TIL, tumor size, histological grade, LN metastasis, nerve invasion, tumor thrombus, pTN stage, and WHO subtypes (p < 0.001, respectively). TILhi was a positive significant predictor of overall survival (OS) in Kaplan–Meier survival analysis (P < 0.001) and multivariate Cox regression analysis (HR = 0.431, 95% CI: 0.347–0.534, P < 0.001). After surgery, patients with malignant tumors underwent chemoradiotherapy according to standard therapeutic guidelines based on TNM stage. The TNM scoring system cannot reflect the full information of TME; therefore, TIL can be used as a diagnostic supplement. We constructed a nomogram model that showed more predictive accuracy for OS than pTN stage. In summary, this study proves that high levels of TIL are associated with a positive prognosis and that TIL reflect the protective host antitumor immune response

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Hydrogen Therapy in Cardiovascular and Metabolic Diseases: from Bench to Bedside

    No full text
    Hydrogen (H2) is colorless, odorless, and the lightest of gas molecules. Studies in the past ten years have indicated that H2 is extremely important in regulating the homeostasis of the cardiovascular system and metabolic activity. Delivery of H2 by various strategies improves cardiometabolic diseases, including atherosclerosis, vascular injury, ischemic or hypertrophic ventricular remodeling, intermittent hypoxia- or heart transplantation-induced heart injury, obesity and diabetes in animal models or in clinical trials. The purpose of this review is to summarize the physical and chemical properties of H2, and then, the functions of H2 with an emphasis on the therapeutic potential and molecular mechanisms involved in the diseases above. We hope this review will provide the future outlook of H2-based therapies for cardiometabolic disease

    Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    No full text
    Supported ionic liquid membranes (SILMs) have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2) at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped

    Laser Self-Mixing Interference: Optical Fiber Coil Sensors for Acoustic Emission Detection

    No full text
    Acoustic emission (AE) testing is a widely used nondestructive testing method for the early detection of failures in materials and structures. In this paper, an AE detection sensor combining optical fiber sensing with laser self-mixing interference (SMI) technology is proposed. A multi-coil optical fiber ring wound round a cylindrical acrylic skeleton was designed in order to sense the deformation caused by AE elastic waves, which was then demodulated using self-mixing interference technology. Finite element analyses were conducted in order to investigate the deformation of fiber under acoustic sources. AE signals induced via ball-dropping impact experiments were successfully detected by the proposed experimental system. The proposed SMI optical fiber AE sensing system has the advantages of being free from electromagnetic interference and having a simple structure, low implementation cost and high measurement resolution and sensitivity

    <i>INMAP</i> Overexpression Inhibits Cell Proliferation, Induces Genomic Instability and Functions through p53/p21 Pathways

    No full text
    <div><p>INMAP is a spindle protein that plays essential role for mitosis, by ensuring spindle and centromere integrality. The aim of this study was to investigate the relevant functions of INMAP for genomic stability and its functional pathway. We overexpressed <i>INMAP</i> in HeLa cells, resulting in growth inhibition in monolayer cell cultures, anchorage-independent growth in soft agar and xenograft growth in nude mice. In this system caused micronuclei (MNi) formation, chromosome distortion and <i>γH2AX</i> expression upregulation, suggesting DNA damage induction and genomic stability impairment. As a tumour biochemical marker, lactate dehydrogenase (LDH) isoenzymes were detected to evaluate cell metabolic activity, the results confirming that total activity of LDH, as well as that of its LDH5 isoform, is significantly decreased in <i>INMAP</i>-overexpressing HeLa cells. The levels of p53 and p21 were upregulated, and however, that of PCNA and Bcl-2, downregulated. Indirect immunofluorescence (IIF) and coimmunoprecipitation (CoIP) analyses revealed the interaction between INMAP and p21. These results suggest that INMAP might function through p53/p21 pathways.</p></div

    Preclinical evaluation of the safety and effectiveness of a new bioartificial cornea

    No full text
    Cross-linking agents are frequently used to restore corneal properties after decellularization, and it is especially important to select an appropriate method to avoid excessive cross-linking. In addition, how to promote wound healing and how to improve scar formation require further investigation. To ensure the safety and efficacy of animal-derived products, we designed bioartificial corneas (BACs) according to the criteria for Class III medical devices. Our BACs do not require cross-linking agents and increase mechanical strength via self-cross-linking of aldehyde-modified hyaluronic acid (AHA) and carboxymethyl chitosan (CMC) on the surface of decellularized porcine corneas (DPCs). The results showed that the BACs had good biocompatibility and transparency, and the modification enhanced their antibacterial and anti-inflammatory properties in vitro. Preclinical animal studies showed that the BACs can rapidly regenerate the epithelium and restore vision within a month. After 3 months, the BACs were gradually filled with epithelial, stromal, and neuronal cells, and after 6 months, their transparency and histology were almost normal. In addition, side effects such as corneal neovascularization, conjunctival hyperemia, and ciliary body hyperemia rarely occur in vivo. Therefore, these BACs show promise for clinical application for the treatment of infectious corneal ulcers and as a temporary covering for corneal perforations to achieve the more time
    corecore