4,173 research outputs found

    A transient solution for vesicle electrodeformation and relaxation

    Full text link
    A transient analysis for vesicle deformation under DC electric fields is developed. The theory extends from a droplet model, with the additional consideration of a lipid membrane separating two fluids of arbitrary properties. For the latter, both a membrane-charging and a membrane-mechanical model are supplied. The vesicle is assumed to remain spheroidal in shape for all times. The main result is an ODE governing the evolution of the vesicle aspect ratio. The effects of initial membrane tension and pulse length are examined. The model prediction is extensively compared with experimental data, and is shown to accurately capture the system behavior in the regime of no or weak electroporation. More importantly, the comparison reveals that vesicle relaxation obeys a universal behavior regardless of the means of deformation. The process is governed by a single timescale that is a function of the vesicle initial radius, the fluid viscosity, and the initial membrane tension. This universal scaling law can be used to calculate membrane properties from experimental data

    Innovative Pedagogical Strategies in Health Professions Education: Active Learning in Dental Materials Science.

    Get PDF
    Dental materials science education is frequently delivered via traditional didactic lectures in preclinical dental programs. This review aimed to appraise the current evidence on innovative pedagogical strategies in teaching dental materials science courses. English-language articles on teaching methods for dental materials science published between January 1990 to October 2022 were searched in nine online databases (Google Scholar, PubMed, Web of Science [WoS], Science Direct, Cochrane Library, EBSCO, LILACS, Open Grey, and EMBASE) according to PRISMA guidelines. The risk of bias (RoB) was assessed using the Cochrane RoB-2 and ROBIN-I tools, whereas the level of evidence was determined based on the OCEBM guidelines. Only 12 primary studies were included. Two randomized studies (RCTs) were deemed as being of "some concern", and one showed a high risk of bias (RoB). Three non-randomized controlled studies (NRS) demonstrated a moderate RoB, whereas the remaining seven were low. Most studies were ranked at Levels 2 and 3 of evidence. Several innovative pedagogical strategies were identified: flipped classrooms, clinical-based learning, computer-assisted learning, group discussion, microteaching with the BOPPPS (bridge-in, learning objective, pre-test, participatory learning, post-test, and summary) model, and game-based learning. The evidence suggested that students generally showed positive perceptions toward these pedagogical strategies. Dental educators should revise their current undergraduate dental materials science curricula and integrate more effective teaching methods

    Adaptive Overcurrent Protection for Microgrids in Extensive Distribution Systems

    Get PDF

    P2-136: Discrepancy of lung cancer cell growth in bone microenvironments

    Get PDF

    Preventive Effects of a Chinese Herbal Formula, Shengjiang Xiexin Decoction, on Irinotecan-Induced Delayed-Onset Diarrhea in Rats

    Get PDF
    Irinotecan is a well-known chemotherapy drug for the treatment of various cancers. However, delayed-onset diarrhea is a common adverse reaction, limiting the application of the drug. The study presented was designed to evaluate the preventive effects of Shengjiang Xiexin decoction (SXD) on irinotecan-induced diarrhea and to explore the possible mechanisms of this action. We established a diarrhea rat model. The condition of the rats was observed. The proliferation and apoptosis of intestinal cells were measured using immunohistochemical assays and a caspase-3 activity assay, respectively. The expression of Lgr5 and CD44 staining were used to observe intestinal stem cells (ISCs). In addition, the activity of β-glucuronidase in the rats’ feces was measured. Our results showed that the number of proliferating intestinal cells in the SXD groups was obviously higher, while the activity of caspase-3 was lower. The expression of Lgr5 and the integrated option density (IOD) of CD44 stain were increased significantly by SXD. Additionally, SXD decreased the activity of β-glucuronidase after irinotecan administration. In conclusion, SXD exhibited preventive effects on irinotecan-induced diarrhea, and this action was associated with an inhibitory effect on intestinal apoptosis and β-glucuronidase and a promotive effect on intestinal cell proliferation due to increased maintenance of ISCs

    Effects of Sangu Decoction on Osteoclast Activity in a Rat Model of Breast Cancer Bone Metastasis

    Get PDF
    Bone metastasis (BM) is a major clinical problem for which current treatments lack full efficacy. The Traditional Chinese Medicine (TCM) Sangu Decoction (SGD) has been widely used to treat BM in China. However, no in vivo experiments to date have investigated the effects of TCM on osteoclast activity in BM. In this study, the protective effect and probable mechanism of SGD were evaluated. The model was established using the breast cancer MRMT-1 cells injected into the tibia of rat. SGD was administrated, compared with Zoledronic acid as a positive control. The development of the bone tumor and osteoclast activity was monitored by radiological analysis. TRAP stain was used to identify osteoclasts quantity and activity. TRAP-5b in serum or bone tumor and TRAP mRNA were also quantified. Radiological examination showed that SGD inhibited tumor proliferation and preserved the cortical and trabecular bone structure. In addition, a dramatic reduction of TRAP positive osteoclasts was observed and TRAP-5b levels in serum and bone tumor decreased significantly. It also reduced the mRNA expression of TRAP. The results indicated that SGD exerted potent antiosteoclast property that could be directly related to its TRAP inhibited activity. In addition it prevented bone tumor proliferation in BM model

    Activation of PI3K/AKT and MAPK Pathway through a PDGFRβ-Dependent Feedback Loop Is Involved in Rapamycin Resistance in Hepatocellular Carcinoma

    Get PDF
    Background: Rapamycin is an attractive approach for the treatment and prevention of HCC recurrence after liver transplantation. However, the objective response rates of rapamycin achieved with single-agent therapy were modest, supporting that rapamycin resistance is a frequently observed characteristic of many cancers. Some studies have been devoted to understanding the mechanisms of rapamycin resistance, however, the mechanisms are cell-type-dependent and studies on rapamycin resistance in HCC are extremely limited. Methodology/Principal Findings: The anti-tumor sensitivity of rapamycin was modest in vitro and in vivo. In both human and rat HCC cells, rapamycin up-regulated the expression and phosphorylation of PDGFRb in a time and dose-dependent manner as assessed by RT-PCR and western blot analysis. Using siRNA mediated knockdown of PDGFRb, we confirmed that subsequent activation of AKT and ERK was PDGFRb-dependent and compromised the anti-tumor activity of rapamycin. Then, blockade of this PDGFRb-dependent feedback loop by sorafenib enhanced the anti-tumor sensitivity of rapamycin in vitro and in an immunocompetent orthotopic rat model of HCC. Conclusions: Activation of PI3K/AKT and MAPK pathway through a PDGFRb-dependent feedback loop compromises the anti-tumor activity of rapamycin in HCC, and blockade of this feedback loop by sorafenib is an attractive approach t
    • …
    corecore