46,360 research outputs found
Astrochemical confirmation of the rapid evolution of massive YSOs and explanation for the inferred ages of hot cores
Aims. To understand the roles of infall and protostellar evolution on the
envelopes of massive young stellar objects (YSOs).
Methods. The chemical evolution of gas and dust is traced, including infall
and realistic source evolution. The temperatures are determined
self-consistently. Both ad/desorption of ices using recent laboratory
temperature-programmed-desorption measurements are included.
Results. The observed water abundance jump near 100 K is reproduced by an
evaporation front which moves outward as the luminosity increases. Ion-molecule
reactions produce water below 100 K. The age of the source is constrained to t
\~ 8 +/- 4 x 10^4 yrs since YSO formation. It is shown that the chemical
age-dating of hot cores at ~ few x 10^3 - 10^4 yr and the disappearance of hot
cores on a timescale of ~ 10^5 yr is a natural consequence of infall in a
dynamic envelope and protostellar evolution. Dynamical structures of ~ 350AU
such as disks should contain most of the complex second generation species. The
assumed order of desorption kinetics does not affect these results.Comment: Accepted by A&A Letters; 4 pages, 5 figure
Recommended from our members
An agent-based DDM for high level architecture
The Data Distribution Management (DDM) service is one of the six services provided in the Runtime Infrastructure (RTI) of High Level Architecture (HLA). Its purpose is to perform data filtering and reduce irrelevant data communicated between federates. The two DDM schemes proposed for RTI, region based and grid based DDM, are oriented to send as little irrelevant data to subscribers as possible, but only manage to filter part of this information and some irrelevant data is still being communicated. Previously (G. Tan et al., 2000), we employed intelligent agents to perform data filtering in HLA, implemented an agent based DDM in RTI (ARTI) and compared it with the other two filtering mechanisms. The paper reports on additional experiments, results and analysis using two scenarios: the AWACS sensing aircraft simulation and the air traffic control simulation scenario. Experimental results show that compared with other mechanisms, the agent based approach communicates only relevant data and minimizes network communication, and is also comparable in terms of time efficiency. Some guidelines on when the agent based scheme can be used are also give
Field correlations and effective two level atom-cavity systems
We analyse the properties of the second order correlation functions of the
electromagnetic field in atom-cavity systems that approximate two-level
systems. It is shown that a recently-developed polariton formalism can be used
to account for all the properties of the correlations, if the analysis is
extended to include two manifolds - corresponding to the ground state and the
states excited by a single photon - rather than just two levels.Comment: 4 pages, 2 figures, published versio
High magnetoresistance at room temperature in p-i-n graphene nanoribbons due to band-to-band tunneling effects
A large magnetoresistance effect is obtained at room-temperature by using
p-i-n armchair-graphene-nanoribbon (GNR) heterostructures. The key advantage is
the virtual elimination of thermal currents due to the presence of band gaps in
the contacts. The current at B=0T is greatly decreased while the current at
B>0T is relatively large due to the band-to-band tunneling effects, resulting
in a high magnetoresistance ratio, even at room-temperature. Moreover, we
explore the effects of edge-roughness, length, and width of GNR channels on
device performance. An increase in edge-roughness and channel length enhances
the magnetoresistance ratio while increased channel width can reduce the
operating bias.Comment: http://dx.doi.org/10.1063/1.362445
A heterotic sigma model with novel target geometry
We construct a (1,2) heterotic sigma model whose target space geometry
consists of a transitive Lie algebroid with complex structure on a Kaehler
manifold. We show that, under certain geometrical and topological conditions,
there are two distinguished topological half--twists of the heterotic sigma
model leading to A and B type half--topological models. Each of these models is
characterized by the usual topological BRST operator, stemming from the
heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with
the former, originating from the (1,0) supersymmetry. These BRST operators
combined in a certain way provide each half--topological model with two
inequivalent BRST structures and, correspondingly, two distinct perturbative
chiral algebras and chiral rings. The latter are studied in detail and
characterized geometrically in terms of Lie algebroid cohomology in the
quasiclassical limit.Comment: 83 pages, no figures, 2 references adde
Surface Operators in N=2 Abelian Gauge Theory
We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly
prove that for any embedding of surface operators in a general, twisted N=2
pure abelian theory on an arbitrary four-manifold, the parameters transform
naturally under the SL(2,Z) duality of the theory. However, for
nontrivially-embedded surface operators, exact S-duality holds if and only if
the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality
holds up to a c-number at most, regardless. Nevertheless, this observation sets
the stage for a physical proof of a remarkable mathematical result by
Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson
invariants solely in terms of the ordinary Donaldson invariants--which, will
appear, among other things, in forthcoming work. As a prelude to that, the
effective interaction on the corresponding u-plane will be computed. In
addition, the dependence on second Stiefel-Whitney classes and the appearance
of a Spin^c structure in the associated low-energy Seiberg-Witten theory with
surface operators, will also be demonstrated. In the process, we will stumble
upon an interesting phase factor that is otherwise absent in the "unramified"
case.Comment: 46 pages. Minor refinemen
Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs
The carrier dynamics of photoexcited electrons in the vicinity of the surface
of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission
spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy
measurements, coupled with Monte Carlo simulations of THz emission, revealed
that the surface electric field of GaAs reverses after passivation. The
conductivity of photoexcited electrons was determined via optical-pump
THz-probe spectroscopy, and was found to double after passivation. These
experiments demonstrate that passivation significantly reduces the surface
state density and surface recombination velocity of GaAs. Finally, we have
demonstrated that passivation leads to an enhancement in the power radiated by
photoconductive switch THz emitters, thereby showing the important influence of
surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter
- …