45 research outputs found

    Cell transcriptomic atlas of the non-human primate Macaca fascicularis.

    Get PDF
    Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).S

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Numerical Computation for a Kind of Time Optimal Control Problem for the Tubular Reactor System

    No full text
    This paper is devoted to the study of numerical computation for a kind of time optimal control problem for the tubular reactor system. This kind of time optimal control problem is aimed at delaying the initiation time τ of the active control as late as possible, such that the state governed by this controlled system can reach the target set at a given ending time T. To compute the time optimal control problem, we firstly approximate the original problem by finite element method and get a new approximation time optimal control problem governed by ordinary differential equations. Then, through the control parameterization method and time-scaling transformation, the approximation problem becomes an optimal parameter selection problem. Finally, we use Sequential Quadratic Program algorithm to solve the optimal parameter selection problem. A numerical simulation is given for illustration

    Numerical investigation of positive dihedral application conditions in compressor cascades

    Get PDF
    This study attempts to make a contribution to the understanding of dihedral application conditions and their aerodynamic mechanisms. The present efforts have finished contrastive investigations on several dihedral blades to their corresponding straight ones with different geometric or aerodynamic conditions including aspect ratio, solidity, aerofoil turning angle, inlet boundary layer configuration and inlet Mach number. A dihedral with the angle between the suction side and the endwall to be obtuse, i.e., positive dihedral, is chosen. The result reveals the dihedral application conditions consist of aerofoil turning angle, inlet boundary layer, inlet Mach number and so on. The further analysis indicates: in a transonic cascade, two considerations are needed on the contrastive relationship between intensities of the two shocks, namely detached shock and passage shock, and the interaction of the shocks with the corner separation
    corecore