78 research outputs found

    Microwave Quasi-periodic Pulsation with Millisecond Bursts in A Solar Flare on 2011 August 9

    Full text link
    An peculiar microwave quasi-periodic pulsation (QPP) accompanying with a hard X-ray (HXR) QPP of about 20 s duration occurred just before the maximum of an X6.9 solar flare on 2011 August 9. The most interesting is that the microwave QPP is consisting of millisecond timescale superfine structures. Each microwave QPP pulse is made up of clusters of millisecond spike bursts or narrow band type III bursts. There are three different frequency drift rates: global frequency drift rate of microwave QPP pulse group, frequency drift rate of microwave QPP pulse, and frequency drift rate of individual millisecond spikes or type III bursts. The physical analysis indicates that the energetic electrons accelerating from a large-scale highly dynamic magnetic reconnecting current sheet above the flaring loop propagate downwards, impact on the flaring plasma loop, and produce HXR bursts. The tearing-mode (TM) oscillations in the current sheet modulate HXR emission and generate HXR QPP; the energetic electrons propagating downwards produce Langmuir turbulence and plasma waves, result in plasma emission. The modulation of TM oscillation on the plasma emission in the current-carrying plasma loop may generate microwave QPP. The TM instability produces magnetic islands in the loop. Each X-point will be a small reconnection site and accelerate the ambient electrons. These accelerated electrons impact on the ambient plasma and trigger the millisecond spike clusters or the group of type III bursts. Possibly each millisecond spike burst or type III burst is one of the elementary burst (EB). Large numbers of such EB clusters form an intense flaring microwave burst.Comment: 14 pages, 6 figures, accepted by Ap

    Solar Radio Bursts with Spectral Fine Structures in Preflares

    Get PDF
    A good observation of preflare activities is important for us to understand the origin and triggering mechanism of solar flares, and to predict the occurrence of solar flares. This work presents the characteristics of microwave spectral fine structures as preflare activities of four solar flares observed by Ond\v{r}ejov radio spectrograph in the frequency range of 0.8--2.0 GHz. We found that these microwave bursts which occurred 1--4 minutes before the onset of flares have spectral fine structures with relatively weak intensities and very short timescales. They include microwave quasi-periodic pulsations (QPP) with very short period of 0.1-0.3 s and dot bursts with millisecond timescales and narrow frequency bandwidths. Accompanying these microwave bursts, there are filament motions, plasma ejection or loop brightening on the EUV imaging observations and non-thermal hard X-ray emission enhancements observed by RHESSI. These facts may reveal certain independent non-thermal energy releasing processes and particle acceleration before the onset of solar flares. They may be conducive to understand the nature of solar flares and predict their occurrence

    Microwave Zebra Pattern Structures in the X2.2 Solar Flare on Feb 15, 2011

    Full text link
    Zebra pattern structure (ZP) is the most intriguing fine structure on the dynamic spectrograph of solar microwave burst. On 15 February 2011, there erupts an X2.2 flare event on the solar disk, it is the first X-class flare since the solar Schwabe cycle 24. It is interesting that there are several microwave ZPs observed by the Chinese Solar Broadband Radiospectrometer (SBRS/Huairou) at frequency of 6.40 ~ 7.00 GHz (ZP1), 2.60 ~ 2.75 GHz (ZP2), and the Yunnan Solar Broadband Radio Spectrometer (SBRS/Yunnan) at frequency of 1.04 ~ 1.13 GHz (ZP3). The most important phenomena is the unusual high-frequency ZP structure (ZP1, up to 7.00 GHz) occurred in the early rising phase of the flare, and there are two ZP structure (ZP2, ZP3) with relative low frequencies occurred in the decay phase of the flare. By scrutinizing the current prevalent theoretical models of ZP structure generations, and comparing their estimated magnetic field strengths in the corresponding source regions, we suggest that the double plasma resonance model should be the most possible one for explaining the formation of microwave ZPs, which may derive the magnetic field strengths as about 230 - 345 G, 126 - 147 G, and 23 - 26 G in the source regions of ZP1, ZP2, and ZP3, respectively.Comment: 18 pages, 6 figures, submitted to ApJ, 201

    Reversed Drifting Quasi-periodic Pulsating Structure in an X1.3 Solar Flare on 2005 July 30

    Full text link
    Based on the analysis of the microwave observations at frequency of 2.60 -- 3.80 GHz in a solar X1.3 flare event observed at Solar Broadband RadioSpectrometer in Huairou (SBRS/Huairou) on 2005 July 30, an interesting reversed drifting quasi-periodic pulsating structure (R-DPS) is confirmed. The R-DPS is mainly composed of two drifting pulsating components: one is a relatively slow very short-period pulsation (VSP) with period of about 130 -- 170 ms, the other is a relatively fast VSP with period of about 70 -- 80 ms. The R-DPS has a weak left-handed circular polarization. Based on the synthetic investigations of Reuven Ramaty High Energy Solar Spectroscopic Imaging (RHESSI) hard X-ray, Geostationary Operational Environmental Satellite (GOES) soft X-ray observation, and magnetic field extrapolation, we suggest the R-DPS possibly reflects flaring dynamic processes of the emission source regions
    • …
    corecore