7,977 research outputs found

    Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    Get PDF
    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Nasal Lipopolysaccharide Challenge and Cytokine Measurement Reflects Innate Mucosal Immune Responsiveness

    Get PDF
    <div><p>Background</p><p><b>P</b>ractical methods of monitoring innate immune mucosal responsiveness are lacking. Lipopolysaccharide (LPS) is a component of the cell wall of Gram negative bacteria and a potent activator of Toll-like receptor (TLR)-4. To measure LPS responsiveness of the nasal mucosa, we administered LPS as a nasal spray and quantified chemokine and cytokine levels in mucosal lining fluid (MLF).</p><p>Methods</p><p>We performed a 5-way cross-over, single blind, placebo-controlled study in 15 healthy non-atopic subjects (n = 14 <i>per protocol</i>). Doses of ultrapure LPS (1, 10, 30 or 100μg/100μl) or placebo were administered by a single nasal spray to each nostril. Using the recently developed method of nasosorption with synthetic adsorptive matrices (SAM), a series of samples were taken. A panel of seven cytokines/chemokines were measured by multiplex immunoassay in MLF. mRNA for intercellular cell adhesion molecule-1 (ICAM-1) was quantified from nasal epithelial curettage samples taken before and after challenge.</p><p>Results</p><p>Topical nasal LPS was well tolerated, causing no symptoms and no visible changes to the nasal mucosa. LPS induced dose-related increases in MLF levels of IL-1β, IL-6, CXCL8 (IL-8) and CCL3 (MIP-1α) (AUC at 0.5 to 10h, compared to placebo, p<0.05 at 30 and 100μg LPS). At 100μg LPS, IL-10, IFN-α and TNF-α were also increased (p<0.05). Dose-related changes in mucosal ICAM-1 mRNA were also seen after challenge, and neutrophils appeared to peak in MLF at 8h. However, 2 subjects with high baseline cytokine levels showed prominent cytokine and chemokine responses to relatively low LPS doses (10μg and 30μg LPS).</p><p>Conclusions</p><p>Topical nasal LPS causes dose-dependent increases in cytokines, chemokines, mRNA and cells. However, responsiveness can show unpredictable variations, possibly because baseline innate tone is affected by environmental factors. We believe that this new technique will have wide application in the study of the innate immune responses of the respiratory mucosa.</p><p>Key Messages</p><p>Ultrapure LPS was used as innate immune stimulus in a human nasal challenge model, with serial sampling of nasal mucosal lining fluid (MLF) by nasosorption using a synthetic absorptive matrix (SAM), and nasal curettage of mucosal cells. A dose response could be demonstrated in terms of levels of IL-1β, IL-6, CXCL8 and CCL3 in MLF, as well as ICAM-1 mRNA in nasal curettage specimens, and levels of neutrophils in nasal lavage. Depending on higher baseline levels of inflammation, there were occasional magnified innate inflammatory responses to LPS.</p><p>Trial Registration</p><p>Clinical Trials.gov <a href="https://clinicaltrials.gov/ct2/show/NCT02284074?term=nasal+lipopolysaccharide&rank=1" target="_blank">NCT02284074</a></p></div

    Mathematical model of flow through the patent ductus arteriosus

    No full text

    Data on the theoretical X-Ray attenuation and transmissions for lithium-ion battery cathodes

    Get PDF
    This article reports the data required for planning attenuation-based X-ray characterisation e.g. X-ray computed tomography (CT), of lithium-ion (Li-ion) battery cathodes. The data reported here is to accompany a co-submitted manuscript (10.1016/j.matdes.2020.108585 [1]) which compares two well-known X-ray attenuation data sources: Henke et al. and Hubbell et al., and applies methodology reported by Reiter et al. to extend this data towards the practical characterisation of prominent cathode materials. This data may be used to extend beyond the analysis reported in the accompanying manuscript, and may aid in the applications for other materials, not limited to Li-ion batteries

    Theoretical transmissions for X-ray computed tomography studies of lithium-ion battery cathodes

    Get PDF
    X-ray computed tomography (CT) has emerged as a powerful tool for the 3D characterisation of materials. However, in order to obtain a useful tomogram, sufficient image quality should be achieved in the radiographs before reconstruction into a 3D dataset. The ratio of signal- and contrast-to-noise (SNR and CNR, respectively) quantify the image quality and are largely determined by the transmission and detection of photons that have undergone useful interactions with the sample. Theoretical transmission can be predicted if only a few variables are known: the material chemistry and penetrating thickness e.g. the particle diameter. This work discusses the calculations required to obtain transmission values for various Li(NiXMnYCoZ)O2 (NMC) lithium-ion battery cathodes. These calculations produce reference plots for quick assessment of beam parameters when designing an experiment. This is then extended to the theoretical material thicknesses for optimum image contrast. Finally, the theoretically predicted transmission is validated through comparison to experimentally determined values. These calculations are not exclusive to NMC, nor battery materials, but may be applied as a framework to calculate various sample transmissions and therefore may aid in the design and characterisation of numerous materials

    Robotic surgery: disruptive innovation or unfulfilled promise? A systematic review and meta-analysis of the first 30 years

    Get PDF
    Background Robotic surgery has been in existence for 30 years. This study aimed to evaluate the overall perioperative outcomes of robotic surgery compared with open surgery (OS) and conventional minimally invasive surgery (MIS) across various surgical procedures. Methods MEDLINE, EMBASE, PsycINFO, and ClinicalTrials.gov were searched from 1990 up to October 2013 with no language restriction. Relevant review articles were hand-searched for remaining studies. Randomised controlled trials (RCTs) and prospective comparative studies (PROs) on perioperative outcomes, regardless of patient age and sex, were included. Primary outcomes were blood loss, blood transfusion rate, operative time, length of hospital stay, and 30-day overall complication rate. Results We identified 99 relevant articles (108 studies, 14,448 patients). For robotic versus OS, 50 studies (11 RCTs, 39 PROs) demonstrated reduction in blood loss [ratio of means (RoM) 0.505, 95 % confidence interval (CI) 0.408–0.602], transfusion rate [risk ratio (RR) 0.272, 95 % CI 0.165–0.449], length of hospital stay (RoM 0.695, 0.615–0.774), and 30-day overall complication rate (RR 0.637, 0.483–0.838) in favour of robotic surgery. For robotic versus MIS, 58 studies (21 RCTs, 37 PROs) demonstrated reduced blood loss (RoM 0.853, 0.736–0.969) and transfusion rate (RR 0.621, 0.390–0.988) in favour of robotic surgery but similar length of hospital stay (RoM 0.982, 0.936–1.027) and 30-day overall complication rate (RR 0.988, 0.822–1.188). In both comparisons, robotic surgery prolonged operative time (OS: RoM 1.073, 1.022–1.124; MIS: RoM 1.135, 1.096–1.173). The benefits of robotic surgery lacked robustness on RCT-sensitivity analyses. However, many studies, including the relatively few available RCTs, suffered from high risk of bias and inadequate statistical power. Conclusions Our results showed that robotic surgery contributed positively to some perioperative outcomes but longer operative times remained a shortcoming. Better quality evidence is needed to guide surgical decision making regarding the precise clinical targets of this innovation in the next generation of its use
    corecore