32 research outputs found

    Effect of the Shoe Sole on the Vibration Transmitted from the Supporting Surface to the Feet

    Get PDF
    Vibration transmitted through the foot can lead to vibration white feet, resulting in blanching of the toes and the disruption of blood circulation. Controlled studies identifying industrial boot characteristics effective at attenuating vibration exposure are lacking. This work focused on the evaluation of vibration transmissibility of boot midsole materials and insoles across the range 10-200 Hz at different foot locations. Questionnaires were used to evaluate the comfort of each material. The materials were less effective at attenuating vibration transmitted to the toe region of the foot than the heel. Between 10 and 20 Hz, all midsole materials reduced the average vibration transmitted to the foot. The average transmissibility at the toes above 100 Hz was larger than 1, evidencing that none of the tested material protects the worker from vibration-related risks. There was a poor correlation between the vibration transmissibility and the subjective evaluation of comfort. Future research is needed to identify materials effective for protecting both the toe and the heel regions of the foot. Specific standards for shoe testing are required as well

    Comparison Between the Biomechanical Responses of the Hand and Foot When Exposed to Vertical Vibration

    Get PDF
    Workers can be exposed daily to foot-transmitted vibration (FTV) from standing on mobile equipment or vibrating platforms and surfaces. This results in a consistent risk of developing neurological, vascular, and musculoskeletal problems. To date, there are no international stand-ards describing procedures with which to evaluate the health risks deriving from long-term ex-posure to FTV. To study the applicability of hand–arm vibration (HAV) standards to the foot, the biomechanical responses of the hand and foot in terms of the frequency response function upon varying contact conditions were compared. Results evidenced similarities between the responses of the wrist and ankle, with differences in resonance for the fingers and toes. The study confirms that HAV standards are more suitable than whole-body vibration standards for evaluating higher frequency exposure to FTV

    Four degree-of-freedom lumped parameter model of the foot-ankle system exposed to vertical vibration from 10 to 60 Hz with varying centre of pressure conditions

    Get PDF
    Modelling the foot-ankle system (FAS) while exposed to foot-transmitted vibration (FTV) is essential for designing inhibition methods to prevent the effects of vibration-induced white-foot. K-means analysis was conducted on a data set containing vibration transmissibility from the floor to 24 anatomical locations on the right foot of 21 participants. The K-means analysis found three locations to be sufficient for summarising the FTV response. A three segment, four degrees-of-freedom lumped parameter model of the FAS was designed to model the transmissibility response at three locations when exposed to vertical vibration from 10 to 60 Hz. Reasonable results were found at the ankle, midfoot, and toes in the natural standing position (mean-squared error (ε) = 0.471, 0.089, 0.047) and forward centre of pressure (COP) (ε = 0.539, 0.058, 0.057). However, when the COP is backward, the model does not sufficiently capture the transmissibility response at the ankle (ε = 1.09, 0.219, 0.039).This work was supported by a Natural Science and Engineering Council of Canada Discovery Grant [RGPIN/ 4252-2015]
    corecore